
Open Industrial User Guide

NXP Semiconductors Document identifier: OpenILUG
User's Guide Rev. 1.8, 05/2020

Contents
Chapter 1 Introduction... 7

1.1 Acronyms and abbreviations... 7
1.2 Reference documentation... 8
1.3 About OpenIL.. 9

1.3.1 OpenIL Organization... 9
1.3.2 Host system requirements.. 10

1.4 Feature set summary...12
1.4.1 Compilation features... 12
1.4.2 Supported industrial features.. 14

1.5 Supported NXP platforms and configurations... 15
1.5.1 Default compilation settings for NXP platforms...16

Chapter 2 Getting started...18
2.1 Getting OpenIL.. 18
2.2 OpenIL quick start... 18

2.2.1 Important notes... 18
2.2.2 Building the final images... 18

2.3 Booting up the board... 21
2.3.1 SD card bootup... 22
2.3.2 QSPI/FlexSPI bootup.. 22
2.3.3 Starting up the board...22

2.4 Basic OpenIL operations... 23

Chapter 3 NXP OpenIL platforms.. 25
3.1 Introduction..25
3.2 LS1021A-TSN... 25

3.2.1 Switch settings.. 25
3.2.2 Updating target images .. 25

3.3 LS1021A-TWR.. 26
3.3.1 Switch settings.. 26
3.3.2 Updating target images .. 26

3.4 LS1021A-IoT... 27
3.4.1 Switch settings ... 27
3.4.2 Updating target images .. 27

3.5 LS1043ARDB, LS1046ARDB and LS1046AFRWY.. 28
3.5.1 Switch settings.. 28
3.5.2 Updating target images .. 28

3.6 LS1012ARDB.. 29
3.6.1 Switch settings.. 30
3.6.2 Updating target images .. 30

3.7 i.MX6QSabreSD..31
3.7.1 Switch settings for the i.MX6Q SabreSD.. 31
3.7.2 Updating target images... 31

3.8 LS1028ARDB and LS1028ATSN.. 32
3.8.1 Switch settings.. 32
3.8.2 Interface naming... 32
3.8.3 Updating target images... 36
3.8.4 LCD controller and DisplayPort/eDP...37

3.9 LX2160ARDB.. 38

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 2 / 199

3.9.1 Switch settings.. 38
3.9.2 Updating target images .. 38

Chapter 4 Industrial features..40
4.1 NETCONF/YANG..40
4.2 TSN... 40
4.3 Xenomai.. 40

4.3.1 Xenomai running mode... 41
4.3.2 RTnet ... 43

4.4 PREEMPT-RT... 47
4.4.1 System RT Latency Tests... 47
4.4.2 RT Application Development...47

4.5 IEEE 1588... 48
4.5.1 Introduction... 48
4.5.2 PTP device types.. 48
4.5.3 Linux PTP stack.. 49
4.5.4 Quick start guide for setting up IEEE standard 1588 demonstration.. 49
4.5.5 Known issues and limitations.. 53
4.5.6 Long term test results for Linux PTP...53

4.6 OP-TEE... 54
4.6.1 Introduction... 55
4.6.2 Deployment architecture... 55
4.6.3 DDR memory map...56
4.6.4 Configuring OP-TEE on LS1021A-TSN platform.. 57
4.6.5 Running OP-TEE on LS1021A-TSN platform... 57

4.7 SELinux... 59
4.7.1 Running SELinux demo.. 59

Chapter 5 IEEE 1588/802.1AS.. 68
5.1 Introduction..68
5.2 Device types..68
5.3 Two types of time-aware systems in IEEE 802.1AS... 68
5.4 linuxptp stack...69
5.5 Quick Start for IEEE 1588... 69

5.5.1 Ordinary clock verification... 69
5.5.2 Boundary clock verification... 70
5.5.3 Transparent clock verification... 70

5.6 Quick Start for IEEE 802.1AS..70
5.6.1 Time-aware end station verification.. 71
5.6.2 Time-aware bridge verification.. 71

5.7 Known issues and limitations.. 72
5.8 Long term test..72

Chapter 6 NETCONF/YANG..73
6.1 Overview..73
6.2 Netopeer2..73

6.2.1 Overview... 73
6.2.2 Sysrepo... 74
6.2.3 Netopeer2 server.. 74
6.2.4 Netopeer2 client.. 74
6.2.5 Workflow in application practice..75

6.3 Installing Netopeer2-cli on Ubuntu18.04... 75

NXP Semiconductors
Contents

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 3 / 199

6.4 Configuration... 76
6.4.1 Enabling NETCONF feature in OpenIL... 76
6.4.2 Netopeer2-server.. 77
6.4.3 Netopeer2-cli ..77
6.4.4 Sysrepod... 80
6.4.5 Sysrepocfg.. 81
6.4.6 Sysrepoctl... 81
6.4.7 Operation examples.. 82
6.4.8 Application scenarios.. 84

6.5 Web UI demo...85
6.6 Troubleshooting...87

Chapter 7 OPC UA.. 89
7.1 OPC introduction... 89
7.2 The node model...89
7.3 Node Namespaces..90
7.4 Node classes...91
7.5 Node graph and references...91
7.6 Open62541..92
7.7 Example of a server application: OPC SJA1105...93
7.8 FreeOpcUa Client GUI.. 93

Chapter 8 TSN .. 96
8.1 Using TSN features on LS1028ARDB...96

8.1.1 Tsntool User Manual... 96
8.1.2 Kernel configuration.. 105
8.1.3 Basic TSN configuration examples on ENETC... 106
8.1.4 Basic TSN configuration examples on the switch... 115
8.1.5 Netconf usage on LS1028ARDB...130

8.2 Using TSN features on LS1021A-TSN board..130
8.2.1 Topology... 130
8.2.2 SJA1105 Linux support... 131
8.2.3 Synchronized 802.1Qbv demo..134
8.2.4 NETCONF usage.. 139

Chapter 9 4G-LTE Modem ..140
9.1 Introduction..140
9.2 Hardware preparation..140
9.3 Software preparation... 140
9.4 Testing 4G USB modem link to the internet.. 140

Chapter 10 OTA implementation... 142
10.1 Introduction..142
10.2 Platform support for OTA demo...142
10.3 Server requirements..143
10.4 OTA test case..144

Chapter 11 EtherCAT.. 145
11.1 Introduction..145
11.2 IGH EtherCAT architecture..145

NXP Semiconductors
Contents

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 4 / 199

11.3 EtherCAT protocol...146
11.4 EtherCAT system integration and example ..147

11.4.1 Building kernel images for EtherCAT.. 147
11.4.2 Command-line tool.. 148
11.4.3 System integration.. 150
11.4.4 Running a sample application... 151

Chapter 12 nxp-servo.. 155
12.1 CoE network..155
12.2 Libnservo Architecture...155
12.3 Xml Configuration..156

12.3.1 Master Element... 157
12.3.2 Axle Element... 160

12.4 Test..160
12.4.1 Hardware Preparation .. 160
12.4.2 Software Preparation.. 161
12.4.3 CoE Network Detection...161
12.4.4 Start Test...161

Chapter 13 FlexCAN..164
13.1 Introduction..164

13.1.1 CAN bus..164
13.1.2 CANopen...165

13.2 FlexCAN integration in OpenIL..167
13.2.1 LS1021AIOT CAN resource allocation..167
13.2.2 Introducing the function of CAN example code...169

13.3 Running a CAN application... 170
13.3.1 Hardware preparation for LS1021-IoT.. 170
13.3.2 Hardware preparation for LS1028ARDB...171
13.3.3 Compiling the CANopen-app binary for the master node... 172
13.3.4 Running the CANopen application.. 173
13.3.5 Running the Socketcan commands.. 176
13.3.6 Testing CAN bus... 176

Chapter 14 NFC click board...178
14.1 Introduction..178
14.2 PN7120 features..178
14.3 Hardware preparation..178
14.4 Software preparation... 178
14.5 Testing the NFC click board.. 179

Chapter 15 BEE Click Board..181
15.1 Introduction..181
15.2 Features.. 181
15.3 Hardware preparation..181
15.4 Software preparation... 182
15.5 Testing the BEE click board.. 183

Chapter 16 BLE click board... 185
16.1 Introduction..185

NXP Semiconductors
Contents

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 5 / 199

16.2 Features.. 185
16.3 Hardware preparation..185
16.4 Software preparation... 186
16.5 Testing the BLE P click board... 187

Chapter 17 QT... 190
17.1 Introduction..190
17.2 Software settings and configuration.. 190
17.3 Hardware setup... 190
17.4 Running the QT5 demo... 191

17.4.1 Environment setting.. 191
17.4.2 Running the demos... 191

Chapter 18 EdgeScale client... 194
18.1 What is EdgeScale.. 194
18.2 Edgescale features..194
18.3 Building EdgeScale client..194
18.4 Procedure to start EdgeScale..194

Chapter 19 Revision history...196

NXP Semiconductors
Contents

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 6 / 199

Chapter 1
Introduction
This document provides a complete description of Open Industrial Linux (OpenIL) features, getting started on OpenIL using NXP
OpenIL platforms, and the various software settings involved. It describes in detail the industrial features, which include
NETCONF/YANG, TSN, Xenomai, Preempt-RT, IEEE 1588, OP-TEE, and SELinux. It also includes detailed steps for running
the demos such as Selinux demo, 1-board TSN Demo, 3-board TSN demo, 4G-LTE demo, and OTA implementation. It also
provides a complete description of the OpenIL compilation steps.

1.1 Acronyms and abbreviations
The following table lists the acronyms used in this document.

Table 1. Acronyms and abbreviations

Term Description

BC Boundary clock

BMC Best master clock

CA Client application

CAN Controller Area Network

DEI Drop eligibility indication

EtherCAT Ethernet for Control Automation Technology

FMan Frame manager

ICMP Internet control message protocol

IETF Internet engineering task force

IPC Inter process communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

NMT Network management

OC Ordinary clock

OpenIL Open industry Linux

OP-TEE Open portable trusted execution environment

OS Operating system

OTA Over-the air

OTPMK One-time programmable master key

PCP Priority code point

PDO Process data object

PHC PTP hardware clock

Table continues on the next page...

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 7 / 199

Table 1. Acronyms and abbreviations (continued)

Term Description

PIT Packet inter-arrival times

PTP Precision time protocol

QSPI Queued serial peripheral interface

RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RTT Round-trip times

SABRE Smart Application Blueprint for Rapid Engineering

SDO Service data object

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TCP Transmission control protocol

TEE Trusted execution environment

TFTP Trivial file transfer protocol

TSN Time sensitive networking

TZASC Trust zone address space controller

UDP User datagram protocol

VLAN Virtual local area network

1.2 Reference documentation
1. Refer to the following documents for detailed instructions on booting up the NXP hardware boards supported by Open IL:

• LS1012ARDB Getting Started Guide.

• LS1021AIoT Getting Started Guide.

• LS1021ATSN Getting Started Guide

• LS1021ATWR Getting Started Guide

• LS1043ARDB Getting Started Guide.

• LS1046ARDB Getting Started Guide.

• LS1046AFRWY Getting Started Guide

• i.MX6 SabreSD Board Quick Start Guide

• LS1028ARDB Quick Start Guide

• LX2160ARDB Quick Start Guide

2. For booting up LS1021A-TSN board, refer to the Section Booting up the board of this document.

3. For the complete description of the industrial IoT baremetal framework, refer to the latest available version of Industrial
IoT Baremetal Framework Developer Guide.

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 8 / 199

https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1021A-IOTGS&location=null&fsrch=1&sr=9&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/fact-sheet/LS1021ATSNRDA4FS.pdf
https://www.nxp.com/webapp/Download?colCode=TWR-LS1021AGS&location=null
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&location=null&fsrch=1&sr=10&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&location=null&fsrch=1&sr=3&pageNum=2&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/quick-reference-guide/FRWY-LS1046AGSG.pdf
https://www.nxp.com/docs/en/user-guide/SABRESDB_IMX6_QSG.pdf
https://www.nxp.com/webapp/Download?colCode=LS1028ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=LX2160ARDBGSG&location=null
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab

1.3 About OpenIL
The OpenIL project (“Open Industry Linux”) is designed for embedded industrial usage. It is an integrated Linux distribution for
industry.

OpenIL is built on buildroot project and provides packages for the industrial market.

• Focus on industry: OpenIL provides key components for industry usage, for example, Time sensitive network (TSN), Netconf,
IEEE 1588, and Xenomai or Preempt-RT.

• Ease of use: OpenIL is a tool that simplifies and automates the process of building a complete Linux system for an embedded
system, using cross-compilation. It follows the buildroot project rules. For more buildroot information, refer to the page: https://
buildroot.org/

• Extensibility: OpenIL provides capabilities of industry usage and standardized Linux system packages. And user can also
easily replicate the same setup on customized packages and devices.

• Lightweight: OpenIL only includes necessary Linux packages and industry packages in order to make the system more
lightweight to adapt to industry usage. Users can customize the package via a configuration file.

• Open Source: OpenIL is an open project. Anyone can participate in the OpenIL development through the Open Source
community.

1.3.1 OpenIL Organization
OpenIL follows the Buildroot directory structure depicted in the following figure. The second and third levels of the directory are
generated during compilation.

Figure 1. OpenIL structure

Table 2. Source directories

Directory name Description

arch Files defining the architecture variants (processor type, ABI, floating point, etc.)

toolchain Packages for generating or using tool-chains

system Contains the rootfs skeleton and options for system-wide features

linux The linux kernel package.

Table continues on the next page...

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 9 / 199

https://buildroot.org/
https://buildroot.org/

Table 2. Source directories (continued)

Directory name Description

package All the user space packages (1800+)

fs Logic to generate file system images in various formats

boot Boot-loader packages

configs Default configuration files for various platforms

board Board-specific files (kernel configurations, patches, image flashing scripts, etc.)

support Miscellaneous utilities (kconfig code, libtool patches, download helpers, and more)

docs Documentation

Table 3. Build directories

Directory name Description

dl Path where all the source tarballs are downloaded

output Global output directory

output/build Path where all source tarballs are extracted and the build of each package takes place.

output/host Contains both the tools built for the host and the sysroot of the toolchain

output/staging A symbolic link to the sysroot, that is, to host/<tuple>/sysroot/ for convenience

output/target The target Linux root filesystem, used to generate the final root filesystem images

output/images Contains all the final images: kernel, bootloader, root file system, and so on

1.3.2 Host system requirements
OpenIL is designed to build in Linux systems. The following host environments have been verified to build the OpenIL.

• Ubuntu 16.10

• Ubuntu 16.04

• Ubuntu 14.04

• Ubuntu 18.04

While OpenIL itself builds most host packages it needs for the compilation, certain standard Linux utilities are expected to be
already installed on the host system. The following tables provide an overview of the mandatory and optional packages.

Package names listed in the following tables might vary between distributions.

 NOTE

Table 4. Host system mandatory packages

Mandatory packages Remarks

which

sed

make Version 3.81 or later

binutils

Table continues on the next page...

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 10 / 199

Table 4. Host system mandatory packages (continued)

Mandatory packages Remarks

build-essential Only for Debian based systems

gcc Version 2.95 or later

g++ Version 2.95 or later

bash

patch

gzip

bzip2

perl Version 5.8.7 or later

tar

cpio

python Version 2.6 or later

unzip

rsync

file Must be in /usr/bin/file

bc

wget

autoconf, dh-autoreconf

openssl, libssl-dev

libmagickwand-dev (Debian,
Ubuntu)

imageMagick-devel (CentOS)

autogen autoconf libtool

pkg-config

python3-pyelftools

python-pyelftools

python3-pycryptodome

python-pycryptodome

binfmt-support used when building ubuntu-rootfs

qemu-system-common used when building ubuntu-rootfs

qemu-user-static used when building ubuntu-rootfs

debootstrap used when building ubuntu-rootfs

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 11 / 199

Table 5. Host system optional packages

Optional packages Remarks

ncurses5 To use the menuconfig interface

qt4 To use the xconfig interface

glib2, gtk2 and glade2 To use the gconfig interface

bazaar Source fetching tools.

If you enable packages using any of these methods, you need to install the corresponding tool
on the host system

cvs

git

mercurial

scp

javac compiler Java-related packages, if the Java Classpath needs to be built for the target system

jar tool

asciidoc Documentation generation tools

w3m

python with the argparse
module

dblatex

graphviz To use graph-depends and <pkg>-graph-depends

python-matplotlib To use graph-build

1.4 Feature set summary
This section provides a summary of OpenIL's compilation and industrial features.

1.4.1 Compilation features
The following are the compilation features:

• Create Ramdisk root filesystem by using the make menuconfig command.

Filesystem images --->
[*] cpio the root filesystem (for use as an initial RAM filesystem)
[*] Create U-Boot image of the root filesystem

This configuration will generate Ramdisk root filesystem based on CPIO, some files created: rootfs.cpio.uboot, rootfs.cpio.gz,
rootfs.cpio.

• Specify partition size of the storage for the filesystem by using the make menuconfig command.

Filesystem images --->
(512M) exact size

This configuration specifies the size of the storage device partition for the building rootfs and currently used by NXP platforms
and SD card device. To set the size of the partition with 512M, 2G or other values, the target system can get the specific size
of partition space for the using filesystem.

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 12 / 199

Another way to modify the space size of second partition: using tool "fdisk" to resize the partition, below are the example steps.

~$ sudo fdisk -l /dev/sdc
Disk /dev/sdc: 7.4 GiB, 7948206080 bytes, 15523840 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x00000000

Device Boot Start End Sectors Size Id Type
/dev/sdc1 * 131072 655359 524288 256M c W95 FAT32 (LBA)
/dev/sdc2 655360 1703935 1048576 512M 83 Linux
Notice: we need this start sectors "655360" of second partition when create new partition.#
~$ sudo fdisk /dev/sdc

Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): d
Partition number (1,2, default 2):

Partition 2 has been deleted.

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p):

Using default response p.
Partition number (2-4, default 2):
First sector (2048-15523839, default 2048): 655360
Last sector, +sectors or +size{K,M,G,T,P} (655360-15523839, default 15523839):

Created a new partition 2 of type 'Linux' and of size 7.1 GiB.
Partition #2 contains a ext4 signature.

Do you want to remove the signature? [Y]es/[N]o: n

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
~$ sudo fsck.ext4 /dev/sdc2
e2fsck 1.44.1 (24-Mar-2018)
/dev/sdc2: clean, 3493/32768 files, 26617/131072 blocks
~$ sudo resize2fs /dev/sdc2
resize2fs 1.44.1 (24-Mar-2018)
Resizing the filesystem on /dev/sdc2 to 1858560 (4k) blocks.
The filesystem on /dev/sdc2 is now 1858560 (4k) blocks long.
~$ sudo fdisk -l /dev/sdc
Disk /dev/sdc: 7.4 GiB, 7948206080 bytes, 15523840 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x00000000

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 13 / 199

Device Boot Start End Sectors Size Id Type
/dev/sdc1 * 131072 655359 524288 256M c W95 FAT32 (LBA)
/dev/sdc2 655360 15523839 14868480 7.1G 83 Linux

• Support custom filesystem (that is, Ubuntu)

Users can download OpenIL and build the target system with an Ubuntu filesystem. The specific filesystem can be set
conveniently by using the make menuconfig command (Notice: "sudo" permission is required when building ubuntu root file
system).

System configuration --->
 Root FS skeleton (custom target skeleton) --->
 Custom skeleton via network --->

Currently, there are six NXP platforms that can support Ubuntu filesystem:

— configs/nxp_ls1043ardb-64b_ubuntu_defconfig

— configs/nxp_ls1043ardb-64b_ubuntu_full_defconfig

— configs/nxp_ls1046ardb-64b_ubuntu_defconfig

— configs/nxp_ls1046ardb-64b_ubuntu_full_defconfig

— configs/nxp_ls1046afrwy-64b_ubuntu_defconfig

— configs/nxp_ls1046afrwy-64b_ubuntu_full_defconfig

— configs/fii_ls1028atsn-64b_ubuntu_defconfig

— configs/fii_ls1028atsn-64b_ubuntu_full_defconfig

— configs/nxp_ls1028ardb-64b_ubuntu_defconfig

— configs/nxp_ls1028ardb-64b_ubuntu_full_defconfig

— configs/nxp_ls1021aiot_ubuntu_defconfig

— configs/nxp_ls1021aiot_ubuntu_full_defconfig

— configs/imx6q-sabresd_ubuntu_defconfig

— configs/imx6q-sabresd_ubuntu_full_defconfig

— configs/nxp_lx2160ardb-64b_ubuntu_defconfig

— configs/nxp_lx2160ardb-64b_ubuntu_full_defconfig

1.4.2 Supported industrial features
The following are the industrial features supported by OpenIL:

• Netconf/Yang

• Netopeer

• TSN

• IEEE 1588

• IEEE 1588 2-step E2E transparent clock support

• Xenomai Cobalt mode

• Preempt-RT

• SELinux (Ubuntu)

• OP-TEE

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 14 / 199

• DM-Crypt

• Baremetal

• FlexCan

• EtherCAT

• NFC-Clickboard

• BEE-Clickboard

• BLE-Clickboard

These are explained in detail in Industrial features.

For the complete description of the Industrial IoT baremetal framework, refer to the document,
Industrial_IoT_Baremetal_Framework_Developer_Guide.

 NOTE

1.5 Supported NXP platforms and configurations
The following table lists the NXP platforms and configurations supported by OpenIL.

Table 6. Supported NXP platforms

Platform Architecture Configuration file in OpenIL Boot

ls1021atsn (default) ARM v7 configs/nxp_ls1021atsn_defconfig SD

ls1021atsn (OP-TEE-SB) ARM v7 configs/nxp_ls1021atsn_optee-sb_defconfig SD

ls1021aiot (default) ARM v7 configs/nxp_ls1021aiot_defconfig SD

ls1021aiot (OP-TEE) ARM v7 configs/nxp_ls1021aiot_optee_defconfig SD

ls1021aiot (Baremetal) ARM v7 configs/nxp_ls1021aiot_baremetal_defconfig SD

ls1021aiot (Ubuntu) ARM v7 configs/nxp_ls1021aiot_ubuntu_defconfig SD

ls1021atwr (default, QSPI) ARM v7 configs/nxp_ls1021atwr_defconfig SD

ls1021atwr (IFC) ARM v7 configs/nxp_ls1021atwr_sdboot_ifc_defconfig SD

ls1043ardb (64bit, default) ARM v8 configs/nxp_ls1043ardb-64b_defconfig SD

ls1043ardb (Baremetal) ARM v8 configs/nxp_ls1043ardb_baremetal-64b_defconfig SD

ls1043ardb (Ubuntu) ARM v8 configs/nxp_ls1043ardb-64b_ubuntu_defconfig SD

ls1046ardb (64bit, default) ARM v8 configs/nxp_ls1046ardb-64b_defconfig SD

ls1046ardb (EMMC) ARM v8 configs/nxp_ls1046ardb-64b-emmcboot_defconfig EMMC

ls1046ardb (QSPI) ARM v8 configs/nxp_ls1046ardb-64b_qspi_defconfig QSPI

ls1046ardb (QSPI-SB) ARM v8 configs/nxp_ls1046ardb-64b_qspi-sb_defconfig QSPI

ls1046ardb (Baremetal) ARM v8 configs/nxp_ls1046ardb_baremetal-64b_defconfig SD

ls1046ardb (Ubuntu) ARM v8 configs/nxp_ls1046ardb-64b_ubuntu_defconfig SD

ls1046afrwy (64bit, default) ARM v8 configs/nxp_ls1046afrwy-64b_defconfig SD

ls1046afrwy (QSPI) ARM v8 configs/nxp_ls1046afrwy-64b_qspi_defconfig QSPI

Table continues on the next page...

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 15 / 199

Table 6. Supported NXP platforms (continued)

Platform Architecture Configuration file in OpenIL Boot

ls1046afrwy (Ubuntu) ARM v8 configs/nxp_ls1046afrwy-64b_ubuntu_defconfig SD

ls1012ardb (64bit) ARM v8 configs/nxp_ls1012ardb-64b_defconfig QSPI

i.MX6Q SabreSD (default) ARM v7 configs/imx6q-sabresd_defconfig SD

i.MX6Q SabreSD (Baremetal) ARM v7 configs/imx6q-sabresd_baremetal_defconfig SD

i.MX6Q SabreSD (Ubuntu) ARM v7 configs/imx6q-sabresd_ubuntu_defconfig SD

ls1028ardb (64bit, default) ARM v8 configs/nxp_ls1028ardb-64b_defconfig SD

ls1028ardb (EMMC) ARM v8 configs/nxp_ls1028ardb-64b-emmc_defconfig EMMC

ls1028ardb (XSPI) ARM v8 configs/nxp_ls1028ardb-64b-xspi_defconfig XSPI

ls1028ardb (Baremetal) ARM v8 configs/nxp_ls1028ardb_baremetal-64b_defconfig SD

ls1028ardb (Ubuntu) ARM v8 configs/nxp_ls1028ardb-64b_ubuntu_defconfig SD

ls1028atsn (64bit, default) ARM v8 configs/fii_ls1028atsn-64b_defconfig SD

ls1028atsn (Ubuntu) ARM v8 configs/fii_ls1028atsn-64b_ubuntu_defconfig SD

lx2160ardb (64bit, default) ARM v8 configs/nxp_lx2160ardb-64b_defconfig SD

lx2160ardb (XSPI) ARM v8 configs/nxp_lx2160ardb-64b-xspi_defconfig XSPI

lx2160ardb (Baremetal) ARM v8 configs/nxp_lx2160ardb_baremetal-64b_defconfig SD

lx2160ardb (Ubuntu) ARM v8 configs/nxp_lx2160ardb-64b_ubuntu_defconfig SD

1.5.1 Default compilation settings for NXP platforms
The following table provides the default compilation settings for each OpenIL NXP platform.

Table 7. Default compilation settings

Platform Toolchain libc Init system Filesystem

ls1021atsn gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1021atsn (OP-TEE) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1021aiot gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1021aiot (OP-TEE) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1021aiot (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm

ls1021atwr gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1043ardb (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1043ardb (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

ls1046ardb (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1046ardb (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

ls1046afrwy (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1046afrwy (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

Table continues on the next page...

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 16 / 199

Table 7. Default compilation settings (continued)

Platform Toolchain libc Init system Filesystem

ls1012ardb (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

i.MX6Q SabreSD gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

i.MX6Q SabreSD gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm

ls1028ardb (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1028ardb (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

ls1028atsn (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

ls1028atsn (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

lx2160ardb (64-bit) gcc 7.5.0 glibc 2.25 BusyBox OpenIL default

lx2160ardb (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm64

NXP Semiconductors
Introduction

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 17 / 199

Chapter 2
Getting started
After reading this section, you should be able to get the OpenIL source code, build and program the NXP platform images, and
run the OpenIL system on the supported NXP platforms.

2.1 Getting OpenIL
OpenIL releases are available every a few months. The Release Number follows the format 'YYYYMM', for example, 201708.
Release tarballs are available at: https://github.com/openil/openil.

To follow development, make a clone of the Git repository. Use the below command:

$ git clone https://github.com/openil/openil.git
$ cd openil
checkout to the 2020.05 v1.8 release
$ git checkout OpenIL-v1.8-202005 -b OpenIL-v1.8-202005

2.2 OpenIL quick start
The steps below help the user to build the NXP platform images with OpenIL quickly. Ensure to follow the important notes provided
in the following section.

2.2.1 Important notes
• Build everything as a normal user. There is no need to be a root user to configure and use OpenIL. By running all commands

as a regular user, you protect your system against packages behaving badly during compilation and installation.

• "sudo" permission is required when building ubuntu root file system.

• The PERL_MM_OPT issue: You might encounter an error message for the PERL_MM_OPT parameter when using the make
command in some host Linux environment as shown below:

You have PERL_MM_OPT defined because Perl local::lib is installed on your system.
Please unset this variable before starting Buildroot, otherwise the compilation of Perl
related packages will fail.
 make[1]: *** [core-dependencies] Error 1
 make: *** [_all] Error 2

To resolve this issue, just unset the PERL_MM_OPT parameter.

$ unset PERL_MM_OPT

2.2.2 Building the final images
For the NXP platforms supported by OpenIL, the default configuration files can be found in the configs directory. The following
table describes the default configuation files for the NXP-supported OpenIL platforms.

Table 8. Default configuration

Platform Configuration file in OpenIL

ls1021atsn configs/nxp_ls1021atsn_defconfig

ls1021atsn (OP-TEE-SB) configs/nxp_ls1021atsn_optee-sb_defconfig

Table continues on the next page...

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 18 / 199

https://github.com/openil/openil

Table 8. Default configuration (continued)

Platform Configuration file in OpenIL

ls1021aiot configs/nxp_ls1021aiot_defconfig

ls1021aiot (OP-TEE) configs/nxp_ls1021aiot_optee_defconfig

ls1021aiot (Baremetal) configs/nxp_ls1021aiot_baremetal_defconfig

ls1021aiot (Ubuntu) configs/nxp_ls1021aiot_ubuntu_defconfig

ls1021atwr (QSPI) configs/nxp_ls1021atwr_defconfig

ls1021atwr (IFC) configs/nxp_ls1021atwr_sdboot_ifc_defconfig

ls1028atsn (64-bit) configs/fii_ls1028atsn-64b_defconfig

ls1028atsn (Ubuntu) configs/fii_ls1028atsn-64b_ubuntu_defconfig

ls1028ardb (EMMC) configs/nxp_ls1028ardb-64b-emmc_defconfig

ls1028ardb (XSPI) configs/nxp_ls1028ardb-64b-xspi_defconfig

ls1028ardb (Baremetal) configs/nxp_ls1028ardb_baremetal-64b_defconfig

ls1028ardb (64-bit) configs/nxp_ls1028ardb-64b_defconfig

ls1028ardb (Ubuntu) configs/nxp_ls1028ardb-64b_ubuntu_defconfig

ls1028ardb (64bit) configs/nxp_ls1028ardb-64b-xspi_defconfig

ls1043ardb (64-bit) configs/nxp_ls1043ardb-64b_defconfig

ls1043ardb (Baremetal) configs/nxp_ls1043ardb_baremetal-64b_defconfig

ls1043ardb (Ubuntu) configs/nxp_ls1043ardb-64b_ubuntu_defconfig

ls1046ardb (64-bit) configs/nxp_ls1046ardb-64b_defconfig

ls1046ardb (EMMC) configs/nxp_ls1046ardb-64b-emmcboot_defconfig

ls1046ardb (QSPI) configs/nxp_ls1046ardb-64b_qspi_defconfig

ls1046ardb (QSPI-SB) configs/nxp_ls1046ardb-64b_qspi-sb_defconfig

ls1046ardb (QSPI4EMMC) configs/nxp_ls1046ardb-64b-emmc_qspiboot_defconfig

ls1046ardb (Baremetal) configs/nxp_ls1046ardb_baremetal-64b_defconfig

ls1046ardb (Ubuntu) configs/nxp_ls1046ardb-64b_ubuntu_defconfig

ls1046afrwy (64-bit) configs/nxp_ls1046afrwy-64b_defconfig

ls1046afrwy (QSPI) configs/nxp_ls1046afrwy-64b_qspi_defconfig

ls1046afrwy (Ubuntu) configs/nxp_ls1046afrwy-64b_ubuntu_defconfig

ls1012ardb (64-bit) configs/nxp_ls1012ardb-64b_defconfig

lx2160ardb (64-bit) configs/nxp_lx2160ardb-64b_defconfig

lx2160ardb (XSPI) configs/nxp_lx2160ardb-64b-xspi_defconfig

lx2160ardb (Baremetal) configs/nxp_lx2160ardb_baremetal-64b_defconfig

lx2160ardb (Ubuntu) configs/nxp_lx2160ardb-64b_ubuntu_defconfig

Table continues on the next page...

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 19 / 199

Table 8. Default configuration (continued)

Platform Configuration file in OpenIL

i.MX6Q SabreSD configs/imx6q-sabresd_defconfig

i.MX6Q SabreSD (Baremtal) configs/imx6q-sabresd_baremetal_defconfig

i.MX6Q SabreSD (Ubuntu) configs/imx6q-sabresd_ubuntu_defconfig

The “configs/nxp_xxxx_defconfig” files listed in the preceding table include all the necessary U-Boot, kernel
configurations, and application packages for the filesystem. Based on the files without any changes, you can build a complete
Linux environment for the target platforms.

To build the final images for an NXP platform (for example, LS1046ARDB), run the following commands:

$ cd openil
$ make nxp_ls1046ardb-64b_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

The make clean command should be implemented before any other new compilation.

 NOTE

The make command generally performs the following steps:

• Downloads source files (as required and at the first instance);

• Configures, builds, and installs the cross-compilation toolchain;

• Configures, builds, and installs selected target packages;

• Builds a kernel image, if selected;

• Builds a bootloader image, if selected;

• Creates the BL2, BL31, BL33 binary from ATF;

• Creates a root filesystem in selected formats.

• Generates the Image file for booting;

After the correct compilation, you can find all the images for the platform at output/images.

images/
├── bl2_sd.pbl --- BL2 + RCW
├── fip.bin --- BL31 + BL33 (uboot)
├── rcw_1800_sdboot.bin --- RCW binary
├── boot.vfat
├── fmucode.bin
├── fsl-ls1046a-rdb-sdk.dtb --- dtb file for ls1046ardb
├── rootfs.ext2
├── rootfs.ext4
├── rootfs.tar
├── sdcard.img --- entire image can be programmed into the SD
├── uboot-env.bin
├── u-boot-dtb.bin --- uboot image for ls1046ardb
└── Image --- kernel image for ls1046ardb

Notice: Image file name used for each configurations as following described:

• xspi.cpio.img: *xspi_defconfig

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 20 / 199

• sdcard.img: default and *emmc_defconfig

• qspi.cpio.img: *qspi_defconfig

2.3 Booting up the board
Before proceeding further with the instructions in this section, refer to the Getting Started Guide of the respective board for detailed
instructions regarding board boot-up. See Reference documentation.

• Before booting up the board, you need to install mbed Windows serial port driver in order to obtain the board

console. This is a one time activity. Please ignore this step if you have already installed the mbed driver on
your system (PC or laptop). You can download the mbed Windows serial port driver from the link below:
https://developer.mbed.org/handbook/Windows-serial-configuration.

• Download and install Tera Term on the host computer from the Internet. After installation, a shortcut to the
tool is created on the desktop of the host computer.

• If you are using a Windows 10 machine as a host computer and encountering a serial port unstable issue,
then, disable the Volume Storage service of the Windows machine.

 NOTE

All the NXP platforms can be booted up from the SD card or QSPI flash. After the compilation for one platform, the image files
(sdcard.img or qspi.img) are generated in the folder output/images. The following table describes the software settings to be
used while booting up the NXP platforms with the images built from OpenIL.

Table 9. Switch settings for the NXP boards

Platform Boot Final image Board software setting (ON = 1)

LS1021ATSN SD card sdcard.img SW2 = 0b’111111

LS1021AIOT SD card sdcard.img SW2[1] = 0b’0

LS1021ATWR SD card sdcard.img QSPI enabled: SW2[1-8] = 0b'00101000, SW3[1-8] = 0b'01100001

IFC enabled: SW2[1-8] = 0b'00100000, SW3[1-8] = 0b'01100001

LS1043ARDB SD card sdcard.img SW4[1-8] +SW5[1] = 0b'00100000_0

LS1046ARDB SD card sdcard.img SW5[1-8] +SW4[1] = 0b'00100000_0

LS1046AFRWY SD card sdcard.img SW1[1-9] = 0b'0_01000000

LS1012ARDB QSPI qspi.img SW1 = 0b'10100110

SW2 = 0b'00000000

LS1028ARDB SD card sdcard.img SW2[1-8] = 0b’10001000

LX2160ARDB SD card sdcard.img SW1[1-4] = 0b’1000

i.MX6Q SabreSD SD card sdcard.img SW6 = 0b’01000010

The flash image (sdcard.img or qspi.img) includes all the information: RCW, DTB, U-Boot, kernel, rootfs, and necessary
applications.

Make sure the board is set to boot up from SD card or QSPI using software configuration. Refer to the preceding
table for the switch settings for the respective platform.

 NOTE

.

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 21 / 199

https://developer.mbed.org/handbook/Windows-serial-configuration

2.3.1 SD card bootup
For platforms that can be booted up from an SD card, following are the steps to program the sdcard.img.into an SD card:

1. Insert one SD card (at least 2G size) into any Linux host machine.

2. Run the below commands:

$ sudo dd if=./sdcard.img of=/dev/sdx
or in some other host machine:
$ sudo dd if=./sdcard.img of=/dev/mmcblkx

find the right SD Card device name in your host machine and replace the “sdx” or “mmcblkx”.

3. Now, insert the SD card into the target board (switch the board boot from SD card first) and power on.

2.3.2 QSPI/FlexSPI bootup
For platforms that can be booted up from QSPI (for example, LS1012ARDB), following are the steps to program the qspi.img into
QSPI flash.

Set the board boot from QSPI, then power on, and enter the U-Boot command environment.

FlexSPI (XSPI, image name is xspi.cpio.img) boot has the same commands to make the flash.

=>i2c mw 0x24 0x7 0xfc; i2c mw 0x24 0x3 0xf5
=>tftp 0x80000000 qspi.cpio.img
=>sf probe 0:0
=>sf erase 0x0 +$filesize
=>sf write 0x80000000 0x0 $filesize
=>reset

2.3.3 Starting up the board
After the sdcard.img/qspi.img programming, startup the board. You should see the following information.

Figure 2. OpenIL system startup

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 22 / 199

The system will be logged in automatically.

2.4 Basic OpenIL operations
This section describes the commands that can be used for performing basic OpenIL operations.

In OpenIL, all packages used are in directory "./package/", and the package name is the sub-directory name. Linux kernel and
uboot are also packages, the package name for Linux kernel is linux, and package name for u-boot is uboot.

Sample usages of the ‘make’ command:

• Displays all commands executed by using the make command:

 $ make V=1 <target>

• Displays the list of boards with a defconfig:

 $ make list-defconfigs

• Displays all available targets:

$ make help

• Sets Linux configurations:

$ make linux-menuconfig

• Deletes all build products (including build directories, host, staging and target trees, images, and the toolchain):

$ make clean

• Resets OpenIL for a new target.

• Deletes all build products as well as the configuration (including dl directory):

$ make distclean

Explicit cleaning is required when any of the architecture or toolchain configuration options are changed.

 NOTE

• Downloading, building, modifying, and rebuilding a package

Run the below command to build and install a particular package and its dependencies:

$ make <pkg>

For packages relying on the OpenIL infrastructure, there are numerous special make targets that can be called independently
such as the below command:

$ make <pkg>-<target>

The package build targets are listed in the following table.

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 23 / 199

Table 10. Package build targets

Package Target Description

<pkg> Builds and installs a package and all its dependencies

<pkg>-source Downloads only the source files for the package

<pkg>-extract Extracts package sources

<pkg>-patch Applies patches to the package

<pkg>-depends Builds package dependencies

<pkg>-configure Builds a package up to the configure step

<pkg>-build Builds a package up to the build step

<pkg>-show-depends Lists packages on which the package depends

<pkg>-show-rdepends Lists packages which have the package as a dependency

<pkg>-graph-depends Generates a graph of the package dependencies

<pkg>-graph-rdepends Generates a graph of the package's reverse dependencies

<pkg>-dirclean Removes the package's build directory

<pkg>-reconfigure Restarts the build from the configure step

<pkg>-rebuild Restarts the build from the build step

Thus, a package can be downloaded in the directory dl/, extracted to the directory output/build/<pkg>, and then built in
the directory output/build/<pkg>. You need to modify the code in the output/build/<pkg>, and then run the command,
$make <pkg>-rebuild to rebuild the package.

For more details about OpenIL operations, refer to the Buildroot document available at the URL: https://buildroot.org/downloads/
manual/manual.html#getting-buildroot.

NXP Semiconductors
Getting started

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 24 / 199

https://buildroot.org/downloads/manual/manual.html#getting-buildroot
https://buildroot.org/downloads/manual/manual.html#getting-buildroot

Chapter 3
NXP OpenIL platforms
OpenIL supports the following NXP Layerscape ARM® platforms: LS1012ARDB, LS1021A-TSN, LS1021-IoT, LS1021A-TWR,
LS1043ARDB, LS1046ARDB, LS1046AFRWY, LS1028ARDB, LS1028ATSN, LX2160ARDB and i.MX6QSabreSD. For more
information about those platforms, refer to the following URLs:

• http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors:QORIQ-
ARM.

• https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-
processors:IMX_HOME

3.1 Introduction
This chapter provides instructions on booting up the boards with a complete SD card or QSPI image. It also describes the process
for deploying the U-Boot, Linux kernel, and root file system on the board. The instructions start with generic host and target board
pre-requisites. These are followed by the board-specifc configurations listed below:

• Switch settings

• U-Boot environment variables

• Device microcodes

• Reset configuration word (RCW)

• Flash bank usage

This chapter is meant for those who want to perform more sub-system debugs, such as U-Boot, kernel, and so
on. At the beginning, the board should be booted up and run in U-Boot command environment.

 NOTE

3.2 LS1021A-TSN
The LS1021A Time-Sensitive Networking (TSN) reference design is a platform that allows developers to design solutions with
the new IEEE Time-Sensitive Networking (TSN) standard. The board includes the QorIQ Layerscape LS1021A industrial
applications processor and the SJA1105T TSN switch. The LS1021A-TSN is supported by an industrial Linux SDK with Xenomai
real time Linux, which also provides utilities for configuring TSN on the SJA1105T switch.

With virtualization support, trust architecture, secure platform, Gigabit Ethernet, SATA interface, and an Arduino Shield connector
for multiple wireless modules, the LS1021A-TSN platform readily supports industrial IoT requirements.

3.2.1 Switch settings
The following table lists and describes the switch configuration for LS1021ATSN board.

OpenIL supports only the SD card boot for LS1021ATSN platform.

 NOTE

Table 11. LS1021ATSN SD boot software setting

Platform Boot source Software setting

LS1021ATSN SD card SW2 = 0b’111111

3.2.2 Updating target images
Use the following commands to build the images for LS1021A-TSN platform:

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 25 / 199

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors:QORIQ-ARM
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors:QORIQ-ARM
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME

• Building images

$ cd openil
$ make nxp_ls1021atsn_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming U-Boot in SD card

Power on the LS1021A-TSN board to the U-Boot command environment, then use the following commands:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500
=>mmc write 0x81000000 8 0x500
#then reset the board

• Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk_size=50000000 console=ttyS0,115200’
=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage
=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8f000000 ls1021a-tsn.dtb
=>bootm 83000000 88000000 8f000000

3.3 LS1021A-TWR
The NXP® TWR-LS1021A module is a development system based on the QorIQ® LS1021A processor.

This feature-rich, high-performance processor module can be used standalone or as part of an assembled Tower® System
development platform.

Incorporating dual Arm® Cortex®-A7 cores running up to 1 GHz, the TWR-LS1021A delivers an outstanding level of performance.

The TWR-LS1021A offers HDMI, SATA3 and USB3 connectors as well as a complete Linux software developer's package.

The module provides a comprehensive level of security that includes support for secure boot, Trust Architecture and tamper
detection in both standby and active power modes, safeguarding the device from manufacture to deployment.

3.3.1 Switch settings
The following table lists and describes the switch configuration for LS1021ATWR board.

Platform Boot source SW setting

LS1021ATWR SD IFC enabled: SW2[1~8] = 0b'00101000; SW3[1-8] = 0b'01100001

QSPI enabled: SW2[1-8] = 0b'00100000; SW3[1-8] = 0b'01100001

3.3.2 Updating target images
Use the following commands to build the images for LS1021A-TWR platform:

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 26 / 199

• Building images

$ cd openil
$ make nxp_ls1021atwr_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming U-Boot in SD card

Power on the LS1021A-TWR board to the U-Boot command environment, then use the following commands:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500
=>mmc write 0x81000000 8 0x500
#then reset the board

• Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk_size=50000000 console=ttyS0,115200’
=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage
=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8f000000 ls1021a-twr.dtb
=>bootm 83000000 88000000 8f000000

3.4 LS1021A-IoT
The LS1021A-IoT gateway reference design is a purpose-built, small footprint hardware platform equipped with a wide array of
both high-speed connectivity and low speed serial interfaces. It is engineered to support the secure delivery of IoT services to
end-users at their home, business, or other commercial locations. The LS1021A-IoT gateway reference design offers an
affordable, ready-made platform for rapidly deploying a secure, standardized, and open infrastructure gateway platform for
deployment of IoT services.

3.4.1 Switch settings
The following table lists and describes the switch configuration for LS1021A-IoT board.

OpenIL supports only the SD card boot for the LS1021A-IoT platform.

 NOTE

Table 12. LS1021A-IoT SD boot software setting

Platform Boot source software setting

LS1021A-IoT SD card SW2[1] = 0b’0

3.4.2 Updating target images
Use the following commands to build the images for LS1021A-IoT platform:

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 27 / 199

• Building images

$ cd openil
$ make nxp_ls1021aiot_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming U-Boot on the SD card

Power on the LS1021A-IoT board to U-Boot command environment. Then, use the commands below:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500
=>mmc write 0x81000000 8 0x500
#then reset the board

• Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk_size=50000000 console=ttyS0,115200’
=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage
=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8f000000 ls1021a-iot.dtb
=>bootm 83000000 88000000 8f000000

3.5 LS1043ARDB, LS1046ARDB and LS1046AFRWY
The QorIQ LS1043A and LS1046A reference design boards are designed to exercise most capabilities of the LS1043A and
LS1046A devices. These are NXP’s first quad-core, 64-bit ARM®-based processors for embedded networking and industrial
infrastructure.

3.5.1 Switch settings
OpenIL supports only the SD card boot mode for LS1043ARDB and the LS1046ARDB platforms.

Table 13. LS1043ARDB/LS1046ARDB SD boot software settings

Platform Boot source Software setting

LS1043ARDB SD card SW4[1-8] +SW5[1] = 0b'00100000_0

LS1046ARDB SD card SW5[1-8] +SW4[1] = 0b'00100000_0

LS1046AFRWY SD card SW1[1-9] = 0b'0_01000000

In order to identify the LS1043A silicon correctly, users should ensure that the SW5[7-8] is = 0b’11.

 NOTE

3.5.2 Updating target images
For LS1043ARDB, LS1046AFRWY and LS1046ARDB platforms, the OpenIL can support 64-bit systems. Use the following
commands to build the images for the LS1043ARDB, LS1046AFRWY or LS1046ARDB platforms:

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 28 / 199

• Building images

$ cd openil
$ make nxp_ls1043ardb-64b_defconfig
or
$ make nxp_ls1046ardb-64b_defconfig
or
$ make nxp_ls1046afrwy-64b_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming BL2, RCW, BL31, U-Boot and FMan ucode in SD card

Power on the LS1043ARDB / LS1046ARDB/LS1046AFRWY board to U-Boot command environment, then use the following
commands:

programming BL2 and RCW (for example: boot from SD card)
=> tftpboot 82000000 bl2_sd.pbl
=> mmc erase 8 800
=> mmc write 82000000 8 800
programming the FMan ucode
=> tftpboot 82000000 fmucode.bin
=> mmc erase 0x4800 0x200
=> mmc write 82000000 0x4800 0x200
programming the BL31 and U-Boot firmware
=> mmc erase 0x800 0x2000
=> tftpboot 82000000 fip.bin
=> mmc write 82000000 0x800 0x2000
#then reset the board

• Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs "root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500 console=ttyS0,115200"
=>saveenv

2. Boot up the system.

for ls1046ardb
=>tftp 83000000 Image
=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8f000000 fsl-ls1046a-rdb-sdk.dtb
or for ls1046afrwy
=>tftp 8f000000 fsl-ls1046a-frwy-sdk.dtb
or for ls1043ardb
=>tftp 8f000000 fsl-ls1043a-rdb-sdk.dtb

=>booti 83000000 88000000 8f000000

3.6 LS1012ARDB
The QorIQ LS1012A processor delivers enterprise-class performance and security capabilities to consumer and networking
applications in a package size normally associated with microcontrollers. Combining a 64-bit ARM®v8-based processor with
network packet acceleration and QorIQ trust architecture security capabilities, the LS1012A features line-rate networking
performance at 1 W typical power in a 9.6 mm x 9.6 mm package.

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 29 / 199

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A

The QorIQ LS1012A reference design board (LS1012A-RDB) is a compact form-factor tool for evaluating LS1012A application
solutions. The LS1012A-RDB provides an Arduino shield expansion connector for easy prototyping of additional components
such as an NXP NFC Reader module.

3.6.1 Switch settings
The LS1012ARDB platform can be booted up only using the QSPI Flash.

The table below lists the default switch settings and the description of these settings.

Table 14. LS1012ARDB QSPI boot software settings

Platform Boot source SW setting

LS1012ARDB QSPI Flash 1 SW1 = 0b'10100110

SW2 = 0b'00000000

QSPI Flash 2 SW1 = 0b'10100110

SW2 = 0b'00000010

3.6.2 Updating target images
For LS1012ARDB platform, the OpenIL supports 32-bit and 64-bit systems. Use the following commands to build the images for
the LS1012ARDB platform:

• Building images

$ cd openil
$ make nxp_ls1012ardb-64b_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming BL2, BL31, U-Boot, RCW and pfe firmware in QSPI

Power on the LS1012ARDB board to U-Boot command environment. Then, use the commands below:

 # programming BL31 and U-Boot
=>i2c mw 0x24 0x7 0xfc; i2c mw 0x24 0x3 0xf5
=>tftp 0x80000000 fip.bin
=>sf probe 0:0
=>sf erase 0x100000 +$filesize
=>sf write 0x80000000 0x100000 $filesize
 # programming BL2 and RCW
=>i2c mw 0x24 0x7 0xfc; i2c mw 0x24 0x3 0xf5
=>tftp 0x80000000 bl2_qspi.pbl
=>sf probe 0:0
=>sf erase 0x0 +$filesize
=>sf write 0x80000000 0x0 $filesize
 # programming pfe firmware
=> tftp 0x80000000 pfe_fw_sbl.itb
=> sf probe 0:0
=> sf erase 0xa00000 +$filesize
=> sf write 0x80000000 0xa00000 $filesize
 # then reset the board

• Deploying kernel and RAMdisk from TFTP

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 30 / 199

1. Set the U-Boot environment.

=>setenv bootargs ‘ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500'
=>saveenv

2. Boot up the system.

=>tftp a0000000 kernel-ls1012a-rdb.itb
=>bootm a0000000

3.7 i.MX6QSabreSD
The i.MX 6Dual/6Quad processors feature NXP's advanced implementation of the quad ARM® Cortex®-A9 core, which operates
at speeds up to 1 GHz. These processors include 2D and 3D graphics processors, 3D 1080p video processing, and integrated
power management. Each processor provides a 64-bit DDR3/LVDDR3/LPDDR2-1066 memory interface and a number of other
interfaces for connecting peripherals, such as WLAN, Bluetooth®, GPS, hard drive, displays, and camera sensors.

The Smart Application Blueprint for Rapid Engineering (SABRE) board for smart devices introduces developers to the i.MX 6
series of applications processors. Designed for ultimate scalability, this entry level development system ships with the i.MX 6Quad
applications processor but is schematically compatible with i.MX6 Dual, i.MX6 DualLite, and i.MX6 Solo application processors.
This helps to reduce time to market by providing a foundational product design and serves as a launching point for more complex
designs.

3.7.1 Switch settings for the i.MX6Q SabreSD
The following table lists and describes the switch configuration for i.MX6Q SabreSD board:

OpenIL supports only the SD card boot for the i.MX6Q SabreSD platform.

 NOTE

Table 15. Switch configuration for the i.MX6Q SabreSD board

Platform Boot source Software setting

i.MX6Q SabreSD SD card on slot 3 SW2[1] = 0b’01000010

3.7.2 Updating target images
Use the following commands to build the images for i.MX6Q SabreSD platform:

Building images

$ cd openil
$ make imx6q-sabresd_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

See built images as follows:
$ ls output/images/
boot.vfat imx6q-sabresd.dtb rootfs.ext2 rootfs.ext2.gz rootfs.ext4.gz rootfs.tar sdcard.img SPL
u-boot.bin u-boot.img zImage

Programming U-Boot on the SD card

Power on the board to U-Boot command environment. Then, use the commands below:

$ dd if=SPL of=/dev/sdX bs=1K seek=1
$ dd if=u-boot.imx of=/dev/sdX bs=1K seek=69; sync

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 31 / 199

Replace sdX with your own SD card 'node name' detected by the system.

 NOTE

Deploying kernel and device tree image

Kernel and device tree image are stored in the first partition (vfat) of SD card.

$ cp -avf imx6q-sabresd.dtb /mnt
$ cp -avf zImage /mnt
$ umount /mnt

/mnt is the mount point of the vfat partition.

 NOTE

3.8 LS1028ARDB and LS1028ATSN
The QorIQ® LS1028A reference design board (LS1028ARDB) is a computing, evaluation, development, and test platform
supporting the QorIQ LS1028A processor, which is a dual-core Arm® Cortex®-v8 A72 processor with frequency up to 1.3 GHz.
The LS1028ARDB is optimized to support SGMII (1 Gbit/s), QSGMII (5 Gbit/s), PCIe x1 (8 Gbit/s), and SATA (6 Gbit/s) over
high-speed SerDes ports, USB 3.0, DisplayPort, and also a high-bandwidth DDR4 memory. The LS1028ARDB can be used to
develop and demonstrate human machine interface systems, industrial control systems such as robotics controllers and motion
controllers, and PLCs. The reference design also provides the functionality needed for Industrial IoT gateways, edge computing,
industrial PCs, and wireless or wired networking gateways.

LS1028ATSN board integrates three SJA1105 TSN switches, which will extend the TSN switch to 12 ports.

3.8.1 Switch settings
The following table lists and describes the switch configuration for LS1028ARDB board.

Platform Boot source SW setting

LS1028ARDB SD sw2: 0b’10001000

3.8.2 Interface naming
The following section ddescribes the association between physical interfaces and networking interfaces as presented by the
software.

3.8.2.1 Interface naming in U-Boot

The following figure shows the Ethernet ports as presented in U-Boot:

Note: In U-Boot running on RDB, only enetc#0 is functional.

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 32 / 199

Figure 3. Ethernet ports in U-Boot

Table 16. Interface naming in U-Boot

RDB port U-Boot interface PCI function Comments

1G MAC1 enetc#0 0000:00:00.0 enetc#0 is 1G SGMII port of ENETC.

N/A enetc#1 0000:00:00.1 enetc#1 is presented in U-Boot on all boards. This interface is not
functional on RDB.

Internal enetc#2 0000:00:00.2 Connected internally (MAC to MAC) to the Ethernet switch. Note
that the switch is not initialized in U-Boot; therefore, this interface
is not functional.

Internal enetc#3 0000:00:00.6 Connected internally (MAC to MAC) to the Ethernet switch. This
interface is presented if bit 851 is set in RCW. Note that the switch
is not initialized in u-boot; therefore, this interface is not functional.

1G SWP0 to

1G SWP3

N/A 0000:00:00.5 The switch is currently not initialized by U-Boot; therefore, these
interfaces are not functional.

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 33 / 199

3.8.2.2 Interface naming in Linux

The following figure shows how Ethernet ports are presented in Linux for LS1028ARDB.

Figure 4. Ethernet ports in Linux

Table 17. Interface naming in Linux

RDB port Linux netdev PCI function Comments

1G MAC1 eno0 0000:00:00.0

N/A eno1 0000:00:00.1 RGMII interface is not present on RDB board and the associated
ENETC interface is disabled in device tree:

&enetc_port1
{ status = "disabled";
}

Internal eno2 0000:00:00.2 Connected internally (MAC to MAC) to swp4. This is used to carry
traffic between the switch and software running on ARM cores.

Table continues on the next page...

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 34 / 199

Table 17. Interface naming in Linux (continued)

Internal eno3 0000:00:00.6 Connected internally (MAC to MAC) to swp5. This is intended to be
used by user- space data-path applications and is disabled by
default. It can be enabled by setting bit 851 in RCW.

1G SWP0 to

1G SWP3

swp0 to swp3 0000:00:00.5 By default, switching is not enabled on these ports.

Internal swp4 Connected internally (MAC to MAC) to eno2.

Internal swp5 Last switch port (connected to eno3) is currently not presented in
Linux.

3.8.2.3 Interface naming for LS1028ATSN

The following figure shows how Ethernet ports are presented both in uboot and Linux.

Figure 5. Ethernet ports

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 35 / 199

Table 18. Interface naming both in uboot and Linux

LS1028ATSN port Linux netdev PCI function Comments

1G MAC1 eno0 0000:00:00.0

N/A eno1 0000:00:00.1

Internal eno2 0000:00:00.2 Connected internally (MAC to MAC) to swp4. This is used to carry
traffic between the switch and software running on ARM cores.

Internal eno3 0000:00:00.6 Connected internally (MAC to MAC) to swp5. This is intended to be
used by user- space data-path applications and is disabled by
default. It can be enabled by setting bit 851 in RCW.

Internal swp0 to swp3 0000:00:00.5 By default, switching is not enabled on these ports.

Internal swp4 Connected internally (MAC to MAC) to eno2.

Internal swp5 Last switch port (connected to eno3) is currently not presented in
Linux.

1G sw0p0 ~ 1G
sw0p2

sw0p0~ sw0p2 Connected internal swp0

1G sw1p0 ~ 1G
sw1p3

sw1p0 ~ sw1p3 Connected internal swp2

3.8.3 Updating target images
This section describes how to update the target images for NXP's LS1028ARDB/LS1028ATSN platforms. For this platform,
OpenIL can support 64-bit systems. Use the following commands to build the images for the LS1028ARDB/LS1028ATSN
platforms:

1. Building images

$ cd openil
$ make nxp_ls1028ardb-64b_defconfig
or
$ make fii_ls1028atsn-64b_defconfig
$ make # or make with a log
$ make 2>&1 | tee build.log

2. Programming BL2, RCW, BL31, U-Boot in SD card:

Power on the LS1028ARDB/LS1028ATSN board to U-Boot command environment, then use the following commands:

programming the BL2 and RCW (for example: boot from SD card) binary
 => tftpboot 82000000 bl2_sd.pbl
 => mmc erase 8 0x800
 => mmc write 0x82000000 8 0x800
programming BL31 and U-Boot
 => tftpboot 82000000 fip.bin
 => mmc erase 0x800 0x800
 => mmc write 82000000 0x800 0x2000
programming the u-boot environment
 => tftpboot 82000000 uboot-env.bin
 => mmc erase 0x2800 0x800

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 36 / 199

 => mmc write 82000000 0x2800 0x800
#then reset the board

3. Deploying kernel and Ramdisk from TFTP

• Set the U-Boot environment using the commands below:

=> setenv bootargs
 "root=/dev/ram0 earlycon=uart8250,mmio,0x21c0500 console=ttyS0,115200"
=> saveenv

• Boot up the system

=> tftp 83000000 Image
=> tftp 88000000 rootfs.cpio.uboot
=> tftp 8f000000 fsl-ls1028a-rdb.dtb
or
=> tftp 8f000000 fii-ls1028a-tsn.dtb
=> booti 83000000 88000000 8f000000

3.8.4 LCD controller and DisplayPort/eDP
The LCD controller is a system master that fetches graphics stored in internal or external memory and displays them on a TFT
LCD panel, with resolution up to 4k (3840x2160).

The display PHY controller offers multi-protocol support of standards, such as eDP and DisplayPort with one of these standards
supported at a time.

Following will describe how to setup one lightweight desktop on LS1028ARDB.

1. Building image

$ cd openil
$ make nxp_ls1028ardb-64b_ubuntu_full_defconfig
$ make -j8
Flash image sdcard.img to SD card and extend the second partition to full space of the card as
previous chapter describes.

2. Connect the displayer to LS1028ARDB:

The default resolution for LS1028ARDB in OpenIL is 1080P (video=1920x1080-32@60), so one displayer support 1080P is
required. If other resolution is wanted, the environment variable "bootargs" in u-boot should be modified according to the required
resolution.

LS1028ARDB has one DP for display, connect LS1028ARDB to displayer with DP cable.

3. Install lightweight desktop:

Xubuntu desktop is one example.

Xubuntu is an elegant and easy to use operating system. Xubuntu comes with Xfce, which is a stable, light and configurable
desktop environment. Xubuntu is perfect for those who want the most out of their desktops, laptops and netbooks with a modern
look and enough features for efficient, daily usage.

Get the IP address (make sure ubuntu can get the IP adress automatically or set it manually)
root@LS1028ARDB-Ubuntu:~# dhclient
Update source list (make sure LS1028ARDB can access internet, setup the proxy if necessary)
root@LS1028ARDB-Ubuntu:~# apt update
Install Xubuntu desktop (More than 2GB space is needed and it will take some time to finish this
job)
root@LS1028ARDB-Ubuntu:~# apt install xubuntu-desktop
Add new user and enter the password

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 37 / 199

Reboot LS1028ARDB board
root@LS1028ARDB-Ubuntu:~# reboot
After rebooting, login dialog will be appeared on displayer, select the user and enter the password
to login.

3.9 LX2160ARDB
The QorIQ LX2160A processor is built on NXP's software-aware, core-agnostic DPAA2architecture, which delivers scalable
acceleration elements sized for application needs,unprecedented efficiency, and smarter, more capable networks. When coupled
with easeof-use facilities such as real-time monitoring and debug, virtualization, and softwaremanagement utilities, the available
toolkits allow for both hardware and softwareengineers to bring a complete solution to market faster than ever.

The LX2160A integrated multicore processor combines sixteen Arm® Cortex®-A72processor cores with 24 lanes of the latest 25
GHz SerDes technology supporting highperformance Ethernet speeds (10 Gbps, 25 Gbps, 40 Gbps, 50 Gbps, and 100 Gbps)
andPCI express to Gen4 (16 Gbps). With the low power of FinFET process technology andcommon network and peripheral bus
interfaces, the LX2160A is well suited fornetworking, telecom/datacom, wireless infrastructure, storage and military/
aerospaceapplications..

The LX2160A processor is supported by a consistent API that provides both basic andcomplex manipulation of the hardware
peripherals in the device, releasing the developerfrom the classic programming challenges of interfacing with new peripherals at
thehardware level.

The QorIQ LX2160A reference design board is a 1U form-factor tool for evaluation and design of value-added networking
applications such as 5G packet processing, network-function virtualization (NFV) solutions, edge computing, white box switching,
industrial applications, and storage controllers.

3.9.1 Switch settings
The following table lists and describes the switch configuration for LX2160ARDB board.

Platform Boot source SW setting

LX2160ARDB SD sw1[1~4]: 0b’1000

3.9.2 Updating target images
Use the following commands to build the images for LX2160ARDB platform:

• Building images

$ cd openil
$ make nxp_lx2160ardb-64b_defconfig
$ make
or make with a log
$ make 2>&1 | tee build.log

• Programming BL2 and RCW , BL31 and U-Boot on the SD card

Power on the LX2160ARDB board to U-Boot command environment. Then, use the commands below:

flash BL2 and RCW (for example: boot from SD card) binary
=>tftp 81000000 bl2_sd.pbl
=>mmc erase 8 0x500
=>mmc write 0x81000000 8 0x500
flash BL31 and U-Boot binary
=>tftp 81000000 fip.bin
=>mmc erase 0x800 0x2000
=>mmc write 0x81000000 0x800 0x2000
flash DDR firmware

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 38 / 199

=>tftp 81000000 fip_ddr.bin
=>mmc erase 0x4000 0x400
=>mmc write 0x81000000 0x4000 0x400
flash phy-ucode firmware
=>tftp 81000000 phy-ucode.txt
=>mmc erase 0x4C00 0x200
=>mmc write 0x81000000 0x4C00 0x200
flash MC firmware
=>tftp 81000000 mc.itb
=>mmc erase 0x5000 0x1800
=>mmc write 0x81000000 0x5000 0x1800
flash dpl-eth firmware
=>tftp 81000000 dpl-eth.19.dtb
=>mmc erase 0x6800 0x800
=>mmc write 0x81000000 0x6800 0x800
flash dpc-usxgmii firmware
=>tftp 81000000 dpc-usxgmii.dtb
=>mmc erase 0x7000 0x800
=>mmc write 0x81000000 0x7000 0x800
#then reset the board

• Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘console=ttyAMA0,115200 root=/dev/ram0 rw rootwait
earlycon=pl011,mmio32,0x21c0000’
=>saveenv

2. Boot up the system.

=>mmcinfo;mmc read $mc_fw_addr 0x05000 0x1800;mmc read $dpc_addr 0x07000 0x800;mmc read
$dpl_addr 0x06800 0x800;fsl_mc start mc $mc_fw_addr $dpc_addr;fsl_mc apply dpl $dpl_addr;
=>tftp 83000000 Image
=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8f000000 fsl-lx2160a-rdb.dtb
=>booti 83000000 88000000 8f000000

NXP Semiconductors
NXP OpenIL platforms

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 39 / 199

Chapter 4
Industrial features
This section provides a description of the following industrial features: NETCONF/YANG, TSN, Xenomai, IEEE 1588, OP-TEE,
and SELinux.

For the Industrial IoT baremetal framework, refer to the document,
Industrial_IoT_Baremetal_Framework_Developer_Guide available at https://www.nxp.com/support/developer-
resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?
tab=Documentation_Tab.

 NOTE

4.1 NETCONF/YANG
• NETCONF v1.0 and v1.1 compliant (RFC 6241)

• NETCONF over SSH (RFC 6242) including Chunked Framing Mechanism

• DNSSEC SSH Key Fingerprints (RFC 4255)

• NETCONF over TLS (RFC 5539bis)

• NETCONF Writable-running capability (RFC 6241)

• NETCONF Candidate configuration capability (RFC 6241)

• NETCONF Validate capability (RFC 6241)

• NETCONF Distinct startup capability (RFC 6241)

• NETCONF URL capability (RFC 6241)

• NETCONF Event Notifications (RFC 5277 and RFC 6470)

• NETCONF With-defaults capability (RFC 6243)

• NETCONF Access Control (RFC 6536)

• NETCONF Call Home (Reverse SSH draft, RFC 5539bis)

• NETCONF Server Configuration (IETF Draft)

4.2 TSN
On the LS1021A-TSN platform, TSN features are implemented as part of the SJA1105TEL Automotive Ethernet L2 switch.
These are:

• MII, RMII, RGMII, 10/100/1000 Mbps

• IEEE 802.1Q: VLAN frames and L2 QoS

• IEEE 1588v2: Hardware forwarding for one-step sync messages

• IEEE 802.1Qci: Ingress rate limiting (per-stream policing)

• IEEE 802.1Qbv: Time-aware traffic shaping

• Statistics for transmitted, received, dropped frames, buffer load

• TTEthernet (SAE AS6802)

4.3 Xenomai
Notice: Xenomai is not enabled in OpenIL v1.8 release.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 40 / 199

https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6242
http://tools.ietf.org/html/rfc4255
http://tools.ietf.org/html/draft-ietf-netconf-rfc5539bis-05
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241%5D
http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc6470
http://tools.ietf.org/html/rfc6243
http://tools.ietf.org/html/rfc6536
http://tools.ietf.org/html/draft-ietf-netconf-reverse-ssh-05
http://tools.ietf.org/html/draft-ietf-netconf-rfc5539bis-05
http://tools.ietf.org/html/draft-kwatsen-netconf-server-01

Xenomai is a free software framework adding real-time capabilities to the mainline Linux kernel. Xenomai also provides emulators
of traditional RTOS APIs, such as VxWorks® and pSOS®. Xenomai has a strong focus on embedded systems, although it runs
over mainline desktop and server architectures as well.

Xenomai 3 is the new architecture of the Xenomai real-time framework, which can run seamlessly side-by-side Linux as a co-
kernel system, or natively over mainline Linux kernels. In the latter case, the mainline kernel can be supplemented by
the PREEMPT-RT patch to meet stricter response time requirements than standard kernel preemption would bring.

One of the two available real-time cores is selected at build time.

Xenomai can help you in:

• Designing, developing, and running a real-time application on Linux.

• Migrating an application from a proprietary RTOS to Linux.

• Optimally running real-time applications alongside regular Linux applications.

Xenomai features are supported for LS1021A-TSN, LS1043ARDB, LS1046ARDB, LS1028ARDB, and i.MX6Q SabreSD. More
information can be found at the Xenomai official website: http://xenomai.org/.

4.3.1 Xenomai running mode
The dual kernel core is codenamed Cobalt, whereas the native Linux implementation is called Mercury. Both Mercury and Cobalt
are supported.

4.3.1.1 Running Xenomai Mercury

Xenomai Mercury provides the following API references:

1. Test programs:

• latency: The user manual for Xenomai timer latency benchmark can be found at:

http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html.

• cyclictest: The user manual for Xenomai high resolution timer test can be found at:

http://www.xenomai.org/documentation/xenomai-2.6/html/cyclictest/index.html.

2. Utilities:

• xeno: The user manual for Wrapper for Xenomai executables can be found at:

http://www.xenomai.org/documentation/xenomai-2.6/html/xeno/index.html.

• xeno-config: The user manual for displaying Xenomai libraries configuration can be found at:

http://www.xenomai.org/documentation/xenomai-2.6/html/xeno-config/index.html.

4.3.1.2 Running Cobalt mode

Xenomai Cobalt provides many APIs to perform testing.

1. Clocktest : The test program clocktest provided by Xenomai can be used to test timer APIs. There are three kinds of
timer sources: CLOCK_REALTIME, CLOCK_MONOTONIC, and CLOCK_HOST_REALTIME.

• Use the below command to check a timer with clock name CLOCK_REALTIME:

$ clocktest –C 0

• Use the below command to check a timer with clock name CLOCK_MONOTONIC:

$ clocktest –C 1

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 41 / 199

https://www.kernel.org/pub/linux/kernel/projects/rt/
http://xenomai.org/
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-2.6/html/xeno-config/index.html

• Use the below command to check a timer with clock name CLOCK_HOST_REALTIME (Just for Arm V7 SoC):

$ clocktest –C 32

2. The interrupts handled by Cobalt : IFC and e1000e interrupts are handled by the Cobalt kernel.

$ cat /proc/xenomai/irq

For e1000e test case, the Linux kernel standard network stack is used instead of rtnet stack.

 NOTE

3. Cobalt IPIPE tracer: The following options are available while configuring the kernel settings:

a. CONFIG_IPIPE_TRACE_ENABLE (Enable tracing on boot): Defines if the tracer is active by default when booting
the system or shall be later enabled via /proc/ipipe/trace/enable. Specifically if function tracing is enabled,
deferring to switch on the tracer reduces the boot time on low-end systems.

b. CONFIG_IPIPE_TRACE_MCOUNT (Instrument function entries): Traces each entry of a kernel function. Note that
this instrumentation, though it is the most valuable one, has a significant performance impact on low-end systems
(~50% larger worst-case latencies on a Pentium-I 133 MHz).

c. CONFIG_IPIPE_TRACE_IRQSOFF (Trace IRQs-off times): Instruments each disable and re-enable of hardware
IRQs. This allows to identify the longest path in a system with IRQs disabled.

d. CONFIG_IPIPE_TRACE_SHIFT (Depth of trace log): Controls the number of trace points. The I-pipe tracer
maintains four ring buffers per CPU of the given capacity in order to switch traces in a lock-less fashion with respect
to potentially pending output requests on those buffers. If you run short on memory, try reducing the trace log depth
which is set to 16000 trace points by default.

e. CONFIG_IPIPE_TRACE_VMALLOC (Use vmalloc’ed trace buffer): Instead of reserving static kernel data, the
required buffer is allocated via vmalloc during boot-up when this option is enabled. This can help to start systems
that are low on memory, but it slightly degrades overall performance. Try this option when a traced kernel hangs
unexpectedly at boot time.

4. Latency of timer IRQ

$ latency -t 2 -T 60

The location of 'latency' might differ from version to version. Currently it is located in /usr/bin.

 NOTE

5. Latency of task in Linux kernel

$ latency -t 1 -T 60

6. Latency of task in user space

$ latency -t 0 -T 60

7. Smokey to check feature enabled

$ smokey --run

8. Thread context switch

$ switchtest -T 30

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 42 / 199

9. xeno-test: By default, the load command is dohell 900, which generates load during 15 minutes.

Step #1: Prepare one storage disk and ethernet port connected server, for example:
$ fdisk /dev/sda
$ mkfs.ext2 /dev/sda1
$ mount /dev/sda1 /mnt
$ ifconfig <nw port> <ip addr>

Step #2:
$ cd /usr/xenomai/bin

Step #3:
$ sudo ./xeno-test -l "dohell -s <server ip> -m /mnt"

4.3.2 RTnet
RTnet is a protocol stack that runs between the Ethernet layer and the application layer (or IP layer). It aims to provide deterministic
communication, by disabling the collision detection CSMA/CD, and preventing buffering packets in the network, through the use
of time intervals (time-slots).

RTnet is a software developed to run on Linux kernel with RTAI or Xenomai real-time extension. It exploits the real time kernel
extension to ensure the determinism on the communication stack. To accomplish this goal, all the instructions related to this
protocol make use of real time kernel functions rather than those of Linux. This binds the latencies to the execution times and
latencies of interruptions, which provides deterministic communication.

The following sections describe how to enable the RTnet feature in Xenomai and enable data path acceleration architecture
(DPAA) for Xenomai RTnet.

4.3.2.1 Hardware requirements

Following are the hardware requirements for implementing the RTnet protocol in your design:

• For LS1043A, two LS1043ARDB boards (one used as a master and one as a slave board).

• For LS1046A, two LS1046ARDB boards (one used as a master and one as a slave board).

• For LS1028A, two LS1028ARDB boards (one used as a master and one as a slave board).

• In case three or more boards are used, a switch is required for connecting all boards into a subnet.

• If you use an e1000e NIC, insert the e1000e NIC into the P4 slot of the LS1043ARDB or LS1046ARDB board.

Figure 6. Hardware setup for RTnet (LS1043A as an example)

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 43 / 199

4.3.2.2 Software requirements

Use the following steps for enabling the RTnet functionality on a Xenomai supported network.

1. Run the command below to configure LS1043ARDB in the openil directory:

make nxp_ls1043ardb-64b_defconfig

2. Alternatively, for configuring LS1046ARDB in the openil directory, use the command below:

make nxp_ls1046ardb-64b_defconfig

3. Or, for configuring LS1028ARDB in the openil directory, use the command below:

make nxp_ls1028ardb-64b_defconfig

4. Then, configure the Linux kernel according to the steps listed below.

For DPAA devices:

• Disable the Linux DPAA driver using the settings below:

$make linux-menuconfig
 Device Drivers --->
 [*] Staging drivers --->
 [] Freescale Datapath Queue and Buffer management

• Add the Xenomai RTnet driver and protocol stack using the commands below:

$make linux-menuconfig
 [*] Xenomai/cobalt --->
 Drivers --->
 RTnet --->
 <M> RTnet, TCP/IP socket interface
 Protocol Stack --->
 <M> RTmac Layer --->
 < > TDMA discipline for RTmac
 < M > NoMAC discipline for RTmac
 Drivers --->
 <M> FMAN independent mode

For e1000e devices:

• Disable the Linux e1000e driver using the settings below:

$make linux-menuconfig
 Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 < > Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support

• Add the Xenomai RTnet driver and protocol stack using the commands below:

$make linux-menuconfig
 [*] Xenomai/cobalt ---> Drivers --->
 RTnet --->
 <M> RTnet, TCP/IP socket interface Protocol Stack --->
 <M> RTmac Layer --->
 < > TDMA discipline for RTmac

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 44 / 199

 <M> NoMAC discipline for RTmac Drivers --->
 <M> New Intel(R) PRO/1000 PCIe (Gigabit)

For ENETC devices

• Disable the Linux ENETC driver using the settings below:

$make linux-menuconfig
 Device Drivers --->
 Network device support --->
 Ethernet driver support --->
 < > ENETC PF driver
 < > FELIX switch driver
Add the Xenomai RTnet driver and protocol stack using the commands below:
 $make linux-menuconfig
 [*] Xenomai/cobalt --->
 Drivers --->
 RTnet --->
 <M> RTnet, TCP/IP socket interface Protocol Stack --->
 <M> RTmac Layer --->
 < > TDMA discipline for RTmac
 < M > NoMAC discipline for RTmac
 Drivers --->
 <M> ENETC

5. Now, run the make command to build all images.

6. After flashing images to the SD card, boot LS1043ARDB or LS1046ARDB from the SD card and enter the Linux prompt.

7. Edit the configuration file, located by default, in the /etc/rtnet.conf directory using the settings below:

a. DPAA devices

• Master board

— RT_DRIVER= "rt_fman_im” - The driver used (currently, it is 'rt_fman_im').

— IPADDR="192.168.100.101” - IP address of the master board.

— NETMASK="255.255.255.0” - The other slave board will have the IP 192.168.100.XXX.

— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

• Slave board

— RT_DRIVER= "rt_fman_im” - The driver used (currently, it is 'rt_fman_im').

— IPADDR="192.168.100.102” - IP address of the slave board.

— NETMASK="255.255.255.0” - net mask

— TDMA_MODE="slave"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

b. e1000e devices:

• Master board

— RT_DRIVER= "rt_e1000e” - The driver used (currently, it is 'rt_e1000e').

— IPADDR="192.168.100.101” - IP address of the master board.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 45 / 199

— NETMASK="255.255.255.0” - The other slave board will have the IP 192.168.100.XXX.

— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

• Slave board

— RT_DRIVER= "rt_e1000e” - The driver used (currently, it is 'rt_e1000e').

— IPADDR="192.168.100.102” - IP address of the slave board.

— NETMASK="255.255.255.0” - net mask

— TDMA_MODE="slave"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

c. ENETC devices

• Master board

— RT_DRIVER= "rt_enetc” - The driver used (currently, it is 'rt_enetc').

— IPADDR="192.168.100.101” - IP address of the master board.

— NETMASK="255.255.255.0” - The other slave board will have the IP 192.168.100.XXX.

— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

• Slave board

— RT_DRIVER= "rt_enetc” - The driver used (currently, it is 'rt_enetc').

— IPADDR="192.168.100.102” - IP address of the slave board.

— NETMASK="255.255.255.0” - net mask

— TDMA_MODE="slave"

— TDMA_SLAVES="192.168.100.102” – If there are two slave boards, this will be “192.168.100.102
192.168.100.103”.

4.3.2.3 Verifying RTnet

Use the following steps to verify your RTnet connection:

• Step1: Load all modules related with Xenomai RTnet and analyze the configuration file both on master and slave sides.

$ rtnet start

• Use CTRL+ Ckey combination to exit after using the preceding command, if it does not exit on its own.

• Use the below command to display all ethernet ports. Currently, it should display four Ethernet ports (QSGMII Port 0 to Port
3) on master and slave:

$ rtifconfig -a

• Configure the network on the master side using the commands below:

$ rtifconfig rteth0 up 192.208.100.101
$ rtroute solicit 192.208.100.102 dev rteth0

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 46 / 199

• Configure the network on the slave side using the command below:

$ rtifconfig rteth0 up 192.208.100.102

If there are more than one slave boards, you should redo this step using the IP address of the used boards.

 NOTE

• Verify the network connection using the command below:

$ rtping 192.208.100.102

4.4 PREEMPT-RT
This option turns the kernel into a real-time kernel by replacing various locking primitives (spinlocks, rwlocks, etc.) with preemptible
priority-inheritance aware variants, enforcing interrupt threading and introducing mechanisms to break up long non-preemptible
sections. This makes the kernel, except for very low level and critical code pathes (entry code, scheduler, low level interrupt
handling) fully preemptible and brings most execution contexts under scheduler control.

4.4.1 System RT Latency Tests
The basic measurement tool for RT Linux is cyclictest.

4.4.1.1 Running Cyclictest

Cyclictest accurately and repeatedly measures the difference between a thread's intended wake-up time and the time at which
it actually wakes up in order to provide statistics about the system's latencies. It can measure latencies in real-time systems
caused by the hardware, the firmware, and the operating system.

The original test was written by Thomas Gleixner (tglx), but several people have subsequently contributed modifications.
Cyclictest is currently maintained by Clark Williams and John Kacur and is part of the test suite rt-tests.

cyclictest :

• Use the below command to Latency Test:

$ cyclictest -p90 –h50 –D30m

For detailed parameters of Cyclictest, please refer to https://wiki.linuxfoundation.org/realtime/documentation/
howto/tools/cyclictest/start?s%5b%5d=cyclictest.

 NOTE

4.4.2 RT Application Development
This section describes how to Development application.

RT Application: API, Basic Structure, Background :

• Basic Linux application rules are the same; Use the POSIX API.

• There is still a division of Kernel Space and User Space.

• Linux applications run in User Space

• For details, please refer to: http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

RT Application: How do you build it :

• Using the cross compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt –Wall

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 47 / 199

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

• Using the native compiler on a target example:

$ gcc <filename>.c -o <filename>.out -lrt –Wall

Scheduling policies have two classes:

Completely Fair Scheduling (CFS)

• SCHED_NORMAL

• SCHED_BATCH

• SCHED_IDLE

RT policies:

• SCHED_FIFO

• SCHED_RR

• SCHED_DEADLINE

4.5 IEEE 1588
This section provides an introduction to the IEEE 1588 features of Open IL. It includes a description of the Precision Time Protocol
(PTP) device types, Linux PTP stack, quick start guide for implementing PTP based on the IEEE standard 1588 for Linux, known
issues and limitations, and long term test results.

4.5.1 Introduction
IEEE Std 1588-2008 (IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems) defines a protocol enabling precise synchronization of clocks in measurement and control systems implemented with
technologies such as network communication, local computing, and distributed objects.

The 1588 timer module on NXP QorIQ platform provides hardware assist for 1588 compliant time stamping. Together with a
software PTP (Precision Time Protocol) stack, it implements precision clock synchronization defined by this standard. Many open
source PTP stacks are available with a little transplant effort, such as linuxptp, which are used for this release demo.

4.5.2 PTP device types
There are five basic types of PTP devices, as follows:

• Ordinary clock: A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the timescale used
in the domain. It may serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

• Boundary clock: A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains the timescale used
in the domain. It may serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

• End-to-end transparent clock: A transparent clock that supports the use of the end-to-end delay measurement mechanism
between slave clocks and the master clock.

• Peer-to-peer transparent clock: A transparent clock that, in addition to providing Precision Time Protocol (PTP) event transit
time information, also provides corrections for the propagation delay of the link connected to the port receiving the PTP event
message. In the presence of peer-to-peer transparent clocks, delay measurements between slave clocks and the master
clock are performed using the peer-to-peer delay measurement mechanism.

• Management node: A device that configures and monitors clocks.

Transparent clock, is a device that measures the time taken for a Precision Time Protocol (PTP) event message
to transit the device and provides this information to clocks receiving this PTP event message.

 NOTE

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 48 / 199

4.5.3 Linux PTP stack
The Linux PTP stack software is an implementation of the Precision Time Protocol (PTP) based on the IEEE standard 1588 for
Linux. Its dual design goals are:

• To provide a robust implementation of the standard.

• To use the most relevant and modern Application Programming Interfaces (API) offered by the Linux kernel.

Supporting legacy APIs and other platforms is not an objective of this software. Following are the main features of the Linux PTP
stack:

• Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.

• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls, including the new
clock_adjtimex system call.

• Implements Boundary Clock (BC) and Ordinary Clock (OC).

• Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).

• Supports IEEE 802.1AS-2011 in the role of end station.

• Modular design allows painless addition of new transports and clock servo algorithms.

4.5.4 Quick start guide for setting up IEEE standard 1588 demonstration
This quick start guide explains the procedure to set up demos of IEEE 1588, including master-slave synchronization, boundary
clock synchronization, and transparent clock synchronization.

1. Hardware requirement

• Two boards for basic master-slave synchronization

• Three or more boards for BC synchronization

• Three or more boards for TC synchronization (One must be LS1021ATSN board)

2. Software requirement

• Linux BSP of industry solution release

• PTP software stack

3. Ethernet interfaces connection for master-slave synchronization

Connect two Ethernet interfaces between two boards in a back-to-back manner. Then, one board works as master and
the other works as a slave when they synchronize. Both the master and the slave work as Ordinary Clocks (OCs).

4. Ethernet interfaces connection for BC synchronization

At least three boards are required for BC synchronization. When three boards are used for BC synchronization, assuming
board A works as boundary clock (BC) with two PTP ports, board B and board C work as OCs.

Table 19. Connecting Ethernet interfaces for boundary clocks (BC) synchronization

Board Clock type Interfaces used

A BC Interface 1, Interface 2.

B OC Interface 1

C OC Interface 1

5. Connect board A interface 1 to board B interface 1 in back-to-back manner.

6. Connect board A interface 2 to board C interface 1 in back-to-back manner. For example, LS1021ATSN BC synchronization
connection is shown in the following figure.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 49 / 199

Boundary Clock

(LS1021ATSN)

SGMII SGMII

SGMII SGMII SGMII SGMII

Ordinary Clock

(LS1021ATSN)

Ordinary Clock

(LS1021ATSN)

Figure 7. LS1021ATSN BC synchronization

7. Ethernet interfaces connection for transparent clock (TC) synchronization

At least three boards are required for TC synchronization. One must be LS1021ATSN board, which is needed as a
transparent clock since there is a SJA1105 switch on it. When three boards are used for TC synchronization, assuming
board A (LS1021ATSN) works as TC with two PTP ports, board B and board C work as OCs.

i.MX6Q SabreSD supports only the master-slave mode.

 NOTE

Table 20. Connecting Ethernet interfaces for TC (transparent clock)

Board Clock Type Interfaces used

A (LS1021ATSN) TC Interface 1, Interface 2. (These are two ports of SJA1105
switch.)

B OC Interface 1

C OC Interface 1

• Connect board A interface 1 to board B interface 1 in a back-to-back manner.

• Connect board A interface 2 to board C interface 1 in a back-to-back manner. For example, LS1021ATSN TC
synchronization connection is shown in the following figure.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 50 / 199

Transparent Clock

(LS1021ATSN SJA1105)

Port Port

SGMII SGMII SGMII SGMII

Ordinary Clock

(LS1021ATSN)

Ordinary Clock

(LS1021ATSN)

Figure 8. LS1021ATSN TC synchronization

8. PTP stack startup

Before starting up the kernel to run PTP stack, make sure there is no MAC address conflict in the network. Different MAC
addresses should be set for each MAC on each board in U-Boot. For example,

Board A:

=> setenv ethaddr 00:04:9f:ef:00:00
=> setenv eth1addr 00:04:9f:ef:01:01
=> setenv eth2addr 00:04:9f:ef:02:02

Board B:

=> setenv ethaddr 00:04:9f:ef:03:03
=> setenv eth1addr 00:04:9f:ef:04:04
=> setenv eth2addr 00:04:9f:ef:05:05

Board C:

=> setenv ethaddr 00:04:9f:ef:06:06
=> setenv eth1addr 00:04:9f:ef:07:07
=> setenv eth2addr 00:04:9f:ef:08:08

Linux PTP stack supports both OC and BC. It is included in the SD card images of LS1021ATSN, LS1043ARDB,
LS1046ARDB, and i.MX6Q SabreSD, built using buildroot.

9. Basic master-slave synchronization

For basic master-slave synchronization, use the below command. It can be observed that the slave synchronizes with the
master with time.

• For LS platforms:

$ ptp4l -i eth0 -p /dev/ptp0 -f /etc/ptp4l_default.cfg –m

• For i.MX platforms:

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 51 / 199

First create ptp config file as follow for both board A and B:

cat ptp.cfg
[global]
#
Run time options
#
logAnnounceInterval -4
logSyncInterval -4
logMinDelayReqInterval -4
logMinPdelayReqInterval -4
tx_timestamp_timeout 10

— Board A

sysctl -w net.ipv4.igmp_max_memberships=20
ifconfig eth0 up 192.168.0.100
ptp4l -f ./ptp.cfg -A -4 -H -m -i eth0

— Board B

sysctl -w net.ipv4.igmp_max_memberships=20
ifconfig eth0 up 192.168.0.101
ptp4l -f ./ptp.cfg -A -4 -H -m -i eth0

10. BC synchronization

For BC synchronization, run OC using the below command. It can be observed that the slave synchronizes with the master
with time.

$ ptp4l -i eth0 -p /dev/ptp0 -f /etc/ptp4l_default.cfg -m

If the board is used as BC with several PTP ports, the ‘-i ’ argument could point more interfaces. For running BC with
more than one interfaces, use the below command:

$ ptp4l -i eth0 -i eth1 -p /dev/ptp0 -f /etc/ptp4l_default.cfg –m

11. TC synchronization

For TC synchronization, set the two-step end-to end transparent clock configuration for SJA1105 on TC (LS1021ATSN).
Free running PTP clock is used for TC because the residence time is very short (about 2 ~ 3 μs as per test results). Even
if synchronization is implemented for TC, the improvement for residence time accuracy is still very small and can be
ignored.

$ sja1105-ptp-free-tc.sh

Run OC using the below command:

 $ ptp4l -i eth0 -p /dev/ptp0 -2 -m

It can be observed that slave synchronizes its time with the master clock. If you use the '-l 7' argument to enable debug
message for slave, the correction field value of Sync and Delay_resp messages are displayed, which are the residence
time of Sync and Delay_req messages.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 52 / 199

• For all the three cases mentioned above, the master clock could be selected by using the software BMC (Best

Master Clock) algorithm.

• The interface name and PTP device name in commands should be changed accordingly.

 NOTE

4.5.5 Known issues and limitations
1. For LS1021ATSN, the Linux PTP stack only supports LS1021A Ethernet interfaces. It cannot be used for SJA1105 switch

Ethernet interfaces.

2. Packet loss issue could be observed on LS1021ATSN SGMII interfaces connected in back-to-back manner. The root cause
is that the PHY supports IEEE 802.11az EEE mode, by default. The low speed traffic makes it switch to low power mode,
which affects 1588 synchronization performance greatly.

Use the below workaround to disable this feature.

$ ifconfig eth0 up
$ ethtool --set-eee eth0 advertise 0
$ ifconfig eth0 down
$ ifconfig eth0 up

3. The ptp4l stack may report a timeout for getting the tx timestamp, but this rarely appears. This is not a bug. The stack tries
to get the tx timestamp after sending a message, but cannot get it if the driver has not completed tx timestamp processing,
in time. Just increasing the tx_timestamp_timeout parameter and re-running the stack will resolve this problem.

ptp4l[574.149]: timed out while polling for tx timestamp
ptp4l[574.152]: increasing tx_timestamp_timeout may correct this issue, but it is likely
caused by a driver bug

4.5.6 Long term test results for Linux PTP
This section describes the long term test results for Linux PTP stack implementation.

Linux PTP

Connection: back-to-back master to slave

Configuration: Sync internal is -3

Test boards: two LS1021ATSN boards, one as master and another one as slave

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 53 / 199

Figure 9. Offset from master in start up state

Figure 10. Offset from master in stable state

4.6 OP-TEE
This section explains how to run Open Portable Trusted Execution Environment (OP-TEE) on ARM® based NXP platforms, such
as LS1021A-TSN and LS1021A-IoT platforms. OP-TEE started as collaboration between ST Microelectronics and Linaro. Later,
it was made available to the open source community. It contains the complete stack from normal world client APIs (optee_client),
the Linux kernel TEE driver (optee_linuxdriver), and the Trusted OS and the secure monitor (optee_os).

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 54 / 199

4.6.1 Introduction
This section describes the operating environment, tools and, dependencies necessary for deploying OP-TEE. It describes the
installation based on the design and setup of one specific environment. Thereafter, users need to adapt the setup and deployment
for their specific environment and requirements.

It includes the following:

• Getting OP-TEE and relevant test program

• Compiling the image

• Prerequisites of integrating TEE binary image into the final images.

• Installation and usage steps for the TEE application and output obtained on the LS1021A platform.

The TEE used for this demo is Open Portable Trusted Execution Environment (OP-TEE).

This release supports the following features:

• Supports the LS1021A-TSN and LS1021A-IOT platforms

• Secure boot by SD boot

• TrustZone Controller enabled

• U-boot: v2016.09.

• Linux Kernel v4.1 with OP-TEE drivers backported from mainline kernel v4.11

• OP-TEE OS: v2.4.0

• OP-TEE Client: v2.4.0

• OP-TEE Test: v2.4.0.

For LS1021AIOT, the nxp_ls1021aiot_optee_defconfig configuration file does not support secure
boot, it just includes OP-TEE.

 NOTE

4.6.2 Deployment architecture
The following figure shows the deployment architecture of OP-TEE on ARM TrustZone enabled SoCs.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 55 / 199

Figure 11. Architecture of OP-TEE on an ARM TrustZone enabled SoC

4.6.3 DDR memory map
The following figure shows the DDR memory map for LS1021A-TSN platform with OP-TEE implementation.

Figure 12. DDR memory map

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 56 / 199

4.6.4 Configuring OP-TEE on LS1021A-TSN platform
Use the following commands to build the images with the OP-TEE feature on the LS1021A-TSN platform.

$ cd openil
$ make clean
$ make nxp_ls1021atsn_optee-sb_defconfig
$ make
#or make with a log
$ make 2>&1 | tee build.log

The host Linux machine must have the following libraries:

• libmagickwand-dev for APT on Debian/Ubuntu.

• ImageMagick-devel for Yum on CentOS.

 NOTE

The nxp_ls1021atsn_optee-sb_defconfig configuration file includes some default configurations for secure boot and OP-
TEE. These are listed below:

1. ls1021atsn_sdcard_SECURE_BOOT_TEE U-Boot configuration.

2. kernel CONFIG_OPTEE configuration.

3. OP-TEE OS, client, and test applications.

4. CST tool to create secure boot keys and headers.

The CST tool can support two special functions, which are:

1. Using custom srk.pri and srk.pub files to maintain the consistent keys. For this feature, move the custom srk.pri and srk.pub
files into the directory named board/nxp/ls1021atsn/. Then, the CST tool creates all the keys and header files for
secure boot based on the two files, each time. In addition, after running gen_keys 1024 to get the srk.pri and srk.pub
files at the first instance, if there are no custom files in board/nxp/ls1021atsn/, the CST tool always uses the existing
srk.pri and srk.pub, until the two files are deleted.

2. Enabling/disabling the core hold-off switch for the secure boot, by using the make menuconfig command.

This can be done by using the following command:

Host utilities --->
[*]host cst tool
*** core hold-off ***
 [*] secure boot core hold-off

After the correct building, the final SD card image named sdcard.img can be located at output/images. The keys for
secure boot that should be programmed into the silicon can be located in the file output/images/srk.txt.

4.6.5 Running OP-TEE on LS1021A-TSN platform
This section provides the commands for running OP-TEE on the LS1021A-TSN platform. It includes commands for secure boot,
executing OP-TEE daemon, and executing OP-TEE test cases.

4.6.5.1 Running secure boot

OP-TEE must run together with secure boot in order to protect all images to avoid being attacked. For details about secure boot,
refer to the section, Secure Boot in the Chapter, Boot Loaders in the online LSDK document: https://
freescalereach01.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 57 / 199

https://freescalereach01.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescalereach01.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US

Refer to the following useful CCS commands for secure boot:

#Connect to CCS and configure Config Chain
delete all
config cc cwtap:<ip address of cwtap> show cc
ccs::config_server 0 10000
ccs::config_chain {ls1020a dap sap2} display ccs::get_config_chain

#Check Initial SNVS State and Value in SCRATCH Registers
ccs::display_mem <dap chain pos> 0x1e90014 4 0 4
ccs::display_mem <dap chain pos> 0x1ee0200 4 0 4

#Write the SRK Hash Value in Mirror Registers
ccs::write_mem <dap chain pos> 0x1e80254 4 0 <SRKH1>
ccs::write_mem <dap chain pos> 0x1e80258 4 0 <SRKH2>
ccs::write_mem <dap chain pos> 0x1e8025c 4 0 <SRKH3>
ccs::write_mem <dap chain pos> 0x1e80260 4 0 <SRKH4>
ccs::write_mem <dap chain pos> 0x1e80264 4 0 <SRKH5>
ccs::write_mem <dap chain pos> 0x1e80268 4 0 <SRKH6>
ccs::write_mem <dap chain pos> 0x1e8026c 4 0 <SRKH7>
ccs::write_mem vdap chain pos> 0x1e80270 4 0 <SRKH8>

#Get the Core Out of Boot Hold-Off
ccs::write_mem <dap chain pos> 0x1ee00e4 4 0 0x00000001

If the image verification passes, the board boot up starts in the secure mode.

4.6.5.2 Executing Op-tee Daemon

Run OPTee client daemon using the command below:

tee-supplicant /dev/teepriv0 &

4.6.5.3 Executing OP-Tee test cases

OP-Tee test cases can be run using the steps listed below.

1. Run xtest binary in Linux console:

xtest

2. Then you should get a log similar to the following as a test result:

Run test suite with level=0
TEE test application started with device [(null)]
##
#
regression
#
##
…
24003 subtests of which 0 failed
76 test cases of which 0 failed
0 test case was skipped
TEE test application done!

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 58 / 199

4.7 SELinux
SELinux is a security enhancement to Linux that allows users and administrators better access control.

Access can be constrained on variables so as to enable specific users and applications to access specific resources. These
resources may take the form of files. Standard Linux access controls, such as file modes (-rwxr-xr-x) are modifiable by the user
and the applications which the user runs. Conversely, SELinux access controls are determined by a policy loaded on the system,
which are not changed by careless users or misbehaving applications.

SELinux also adds finer granularity to access controls. Instead of only being able to specify who can read, write or execute a file,
for example, SELinux lets you specify who can unlink, append only, move a file, and so on. SELinux allows you to specify access
to many resources other than files as well, such as network resources and interprocess communication (IPC).

More information can be found at official Security Enhanced Linux (SELinux) project page: https://selinuxproject.org.

4.7.1 Running SELinux demo
This section describes the procedure for running the SELinux demo on NXP's LS1043ARDB-64bit and LS1046ARDB-64bit
platforms.

4.7.1.1 Obtaining the image for SELinux

The SELinux can run on the NXP platforms:- LS1028ARDB, LS1043ARDB-64bit, and LS1046ARDB-64bit with Ubuntu file
system.

Use the below commands for building these two platforms for the SELinux demo:

$ cd openil
$ make clean

$ make nxp_ls1043ardb-64b_ubuntu_defconfig # for ls1043ardb-64b platform
or
$ make nxp_ls1046ardb-64b_ubuntu_defconfig # for ls1046ardb-64b platform
or
$ make nxp_ls1028ardb-64b_ubuntu_defconfig # for ls1028ardb-64b platform

$ make
or make with a log
$ make 2>&1 | tee build.log

4.7.1.2 Installing basic packages

Install the following basic packages before running the SELlinux demo:

1. Basic packages:

• $ apt-get update

• $ apt-get install dpkg

• $ apt-get install vim

• $ apt-get install wget

• $ apt-get install bzip2

• $ apt-get install patch

• $ apt-get install bison

• $ apt-get install flex

• $ apt-get install xz-utils

• $ apt-get install auditd

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 59 / 199

https://selinuxproject.org

• $ apt-get install ssh

• $ apt-get install apache2

• apt-get install policycoreutils

• $ apt-get install selinux-utils

• $ apt-get install selinux-basics

2. Reboot the board to u-boot prompt, add parameters "security=selinux selinux=1 enforcing=0" to bootargs (ls1028ardb as
example)

=> setenv bootcmd 'setenv bootargs root=/dev/mmcblk0p2 rootwait rw earlycon=uart8250,0x21c0500
console=ttyS0,115200 cma=256M video=1920x1080-32@60 security=selinux selinux=1
enforcing=0;mmcinfo;fatload mmc 0:1 ${dp_load} ${dp_file}; hdp load ${dp_load} $
{dp_offset};fatload mmc 0:1 ${loadaddr} ${bootfile};fatload mmc 0:1 ${fdtaddr} ${fdtfile};booti $
{loadaddr} - ${fdtaddr}'

4.7.1.3 Basic setup

Perform the following basic steps before running the SELlinux demo.

1. Map root to sysadm_u, modify the mapping of root and selinux user:

$ semanage login -m -s sysadm_u root

Logout and login again. Check root’s SELinux login user:

$ id -Z
sysadm_u:sysadm_r:sysadm_t:s0

2. Map linux user to a selinux user named user_u:

$ semanage login -m -s user_u __default__

Check all the selinux users logged in:

$ semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0 *
root sysadm_u s0 *
system_u system_u s0-s0:c0.c1023 *

3. Label the system. Modify the SELinux config file with SELINUXTYPE=default using the command below:

$ vim /etc/selinux/config

Restore the type of files in /root:

$ semanage fcontext -a -t home_root_t '/root(/.*)?'

4. Check ssh server after the kernel boots up:

$ systemctl status ssh
ssh.service - OpenBSD Secure Shell server
Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled) Active: active
(running) since 2017-05-09 07:23:56 CST; 1 weeks 6 days ago
Main PID: 908 (sshd)

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 60 / 199

CGroup: /system.slice/ssh.service
└─908 /usr/sbin/sshd -D

If checking the ssh server status fails, restart the ssh server using the command below:

$ systemctl restart ssh

5. Check the http server:

$ systemctl status apache2
 └─apache2.service - LSB: Apache2 web server
Loaded: loaded (/etc/init.d/apache2; bad; vendor preset: enabled) Drop-In: /lib/systemd/system/
apache2.service.d
└─apache2-systemd.conf
Active: active (running) since Thu 2016-02-11 16:30:39 UTC; 2min 3s ago Docs: man:systemd-sysv-
generator(8)
Process: 3975 ExecStart=/etc/init.d/apache2 start (code=exited, status=0/SUCCE CGroup: /
system.slice/apache2.service
├─3990 /usr/sbin/apache2 -k start
├─3993 /usr/sbin/apache2 -k start
└─3994 /usr/sbin/apache2 -k start

If checking the apache2 status fails, restart apache2 service:

$ systemctl restart apache2

6. Add the user test1: Add a linux user named test1. Specify password for test1 and other configurations can be defaultMap
root to sysadm_u.

$ adduser test1
Adding user `test1' ...
Adding new group `test1' (1001) ...
Adding new user `test1' (1001) with group `test1' ... Creating home directory `/home/test1' ...
Copying files from `/etc/skel' ... Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully Changing the user information for test1
Enter the new value, or press ENTER for the default Full Name []:
Room Number []: Work Phone []: Home Phone []: Other []:
Is the information correct? [Y/n] y

4.7.1.4 Demo 1: local access control

This demo shows how SELinux protects a local file. The process cannot access local files if it is unauthorized.

Example 1: Denying a process from reading a wrong file type
In this example, a vi process created by user with uid: test1, acts as a subject to access a common file, which has a DAC
permission of 777.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 61 / 199

Figure 13. Allowing local file access control

1. root: create a test file:

$ echo “file created in root home” > /root/file
$ chmod 777 /root/file
$ mv /root/file /
$ ls -Z /file
sysadm_u:object_r:user_home_t:s0 /file

2. root: enable SELinux:

$ setenforce 1
$ getenforce 0
Enforcing

3. User test1: logs in and visits the file. User test1 logs in the system via ssh and checks id info:

$ id -Z
user_u:user_r:user_t:s0

User test1 visits the file using the vi command.

$ vi /file

SELinux denies access to the file, even though the file is 777.

Figure 14. The VI command log

Because there is no allowed rule such as the following

allow user_t home_root_t: file {write append}

4. root: change the type of file

$ setenforce 0
$ chcon -u user_u /file
$ setenforce 1

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 62 / 199

5. User test1: visits the file of correct type, and his request is approved. The user test1 visits the file again and succeeds.

$ vi /file

6. root: Refer to the audit log: /var/log/audit/audit.log with commands audit2why and audit2allow.

$ audit2why -a

There is an AVC information about access denied and a reasonable root cause as shown in the below figure.

Figure 15. Audit log for vi

$ audit2allow -a

This command suggests the rules that can approve the access.

Figure 16. Audit suggestion for Vi

Example 2: Denying a root user from changing SELinux running mode

In this example, the root user is restricted to have no permission to change the SELinux running mode when SELinux is enforced.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 63 / 199

Figure 17. Restricting root permissions

1. Root: Turn on and then turn off Selinux

Booleans are shortcuts for the user to modify the SELinux policy dynamically. The policy,secure_mode_policyload is one
of these policies, which can deny a root user from changing SELinux running mode. By default, it is Off.

$ getsebool secure_mode_policyload
secure_mode_policyload --> off

Root can turn on SELinux:

$ setenforce 1

Root can then turn off SELinux:

$ setenforce 0

2. root: enable secure_mode_policyload

Now the SELinux is permissive. Run the setsebool command to enable secure_mode_policyload:

$ setsebool secure_mode_policyload on

Check the status of secure_mode_policyload again:

$ getsebool secure_mode_policyload
secure_mode_policyload --> on

3. Root: Try to turn on and turn off SELinux.

Root can still turn on SELinux:

$ setenforce 1

Root tries to turn off SELinux but gets permission denied:

$ setenforce 0
 setenforce: setenforce() failed

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 64 / 199

If root user want to disable Enforcing, should do following:

$ setsebool secure_mode_policyload off
$ setenforce 0
$ getenforce
Permissive

4.7.1.5 Demo 2: enabling remote access control

This demo shows how SELinux can also be used to provide website visiting permissions. A web client cannot access website
files remotely if it is not authorized.

Example 1: Denying an HTTP client from visiting a private website

Use the following commands for running this sample demo:

1. root: Copy index.html to /root

$ cp /var/www/html/index.html /root

2. root: Move index.html to apache2

$ mv /root/index.html /var/www/html/index.html

3. root: turn on SELinux and wget website

$ setenforce 1
$ wget localhost
--2020-05-28 21:01:33-- http://localhost/
Resolving localhost (localhost)... ::1, 127.0.0.1
Connecting to localhost (localhost)|::1|:80... failed: Connection refused.
Connecting to localhost (localhost)|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 403 Forbidden
2020-05-28 21:01:33 ERROR 403: Forbidden.

Now wget, as a http client, fails to visit apache2 home page.

4. root: check type of index.html.

$ ls -Z /var/www/html/index.html
sysadm_u:object_r:user_home_t:SystemLow /var/www/html/index.html

The index.html has a type of home_root_t which cannot be access by the http client with type httpd_t.

5. root: restore index.html to a right type.

$ setenforce 0
$ restorecon /var/www/html/index.html
$ ls -Z /var/www/html/index.html
sysadm_u:object_r:httpd_sys_content_t:SystemLow /var/www/html/index.html

The index.html now contains the httpd_sys_content_t and can be access by httpd_t.

6. root: turn on SELinux and visit again.

$ setenforce 1
$ wget localhost
--2020-05-28 21:03:39-- http://localhost/
Resolving localhost (localhost)... ::1, 127.0.0.1
Connecting to localhost (localhost)|::1|:80... failed: Connection refused.

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 65 / 199

Connecting to localhost (localhost)|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 10918 (11K) [text/html]
Saving to: 'index.html'

index.html 100%[===================>] 10.66K --.-KB/s in 0s

2020-05-28 21:03:39 (109 MB/s) - 'index.html' saved [10918/10918]

Example 2 Denying ssh client from remote login with root

The following figure shows how to deny ssh remote login permission for a root user.

Figure 18. ssh remote permission

1. root: config sshd to permitrootlogin

$ setenforce 0
$ vi /etc/ssh/sshd_config

Find “PermitRootLogin prohibit-password” and change it to “PermitRootLogin yes”

2. root: restart ssh server

$ systemctl restart ssh

Now root should be allowed to access the system from remote side with ssh.

3. root: turn on SELinux and ssh.

$ setenforce 1
$ ssh root@localhost
/bin/bash: Permission denied
Connection to localhost closed.

Even though sshd_config file has permitted root login but still fails in ssh.

4. root: turn on ssh login boolean

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 66 / 199

Check that the following settings are configured:

$ getsebool -a | grep ssh
allow_ssh_keysign --> off
fenced_can_ssh --> off
sftpd_write_ssh_home --> off
ssh_sysadm_login --> off
ssh_use_gpg_agent --> off

There is a boolean named ssh_sysadm_login. This denies a root user from ssh login. Turn on it.

$ setenforce 0
$ setsebool ssh_sysadm_login on

5. root: enforcing and ssh again.

$ setenforce 1
$ ssh root@localhost

Now root user can ssh successfully.

6. root: refer to the audit log.

$ audit2why -a

Figure 19. Audit log for sshd

$ audit2allow -a

NXP Semiconductors
Industrial features

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 67 / 199

Chapter 5
IEEE 1588/802.1AS
IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and control systems.

IEEE 802.1AS is the IEEE standard for local and metropolitan area networks – timing and synchronization for time-sensitive
applications in bridged local area networks. It specifies the use of IEEE 1588 specifications where applicable in the context of
IEEE Std 802.1D-2004 and IEEE Std 802.1Q-2005.

5.1 Introduction
NXP’s QorIQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module. The software
components required to run IEEE 1588/802.1AS protocol utilizing the hardware feature are listed below:

1. Linux PTP Hardware Clock (PHC) driver

2. Linux Ethernet controller driver with hardware timestamping support

3. A software stack application for IEEE 1588/802.1AS

In this document, IEEE 1588 mentioned is IEEE 1588-2008, and IEEE 802.1AS mentioned is IEEE 802.1AS-2011.

 NOTE

5.2 Device types
There are five basic types of PTP devices in IEEE 1588.

• Ordinary clock

A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the timescale used in the domain. It may
serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

• Boundary clock

A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains the timescale used in the domain. It
may serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

• End-to-end transparent clock

A transparent clock that supports the use of the end-to-end delay measurement mechanism between slave clocks and the master
clock.

• Peer-to-peer transparent clock

A transparent clock that, in addition to providing Precision Time Protocol (PTP) event transit time information, also provides
corrections for the propagation delay of the link connected to the port receiving the PTP event message. In the presence of peer-
to-peer transparent clocks, delay measurements between slave clocks and the master clock are performed using the peer-to-
peer delay measurement mechanism.

• Management node

A device that configures and monitors clocks.

(Note: Transparent clock, is a device that measures the time taken for a Precision Time Protocol (PTP) event message to transit
the device and provides this information to clocks receiving this PTP event message.)

5.3 Two types of time-aware systems in IEEE 802.1AS
In gPTP, there are only two types of time-aware systems: end stations and Bridges, while IEEE 1588 has ordinary clocks,
boundary clocks, end-to-end transparent clocks, and P2P transparent clocks. A time-aware end station corresponds to an IEEE
1588 ordinary clock, and a time-aware Bridge is a type of IEEE 1588 boundary clock where its operation is very tightly defined,

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 68 / 199

so much so that a time-aware Bridge with Ethernet ports can be shown to be mathematically equivalent to a P2P transparent
clock in terms of how synchronization is performed.

1. Time-aware end station

An end station that is capable of acting as the source of synchronized time on

the network, or destination of synchronized time using the IEEE 802.1AS protocol, or both.

2. Time-aware bridge

A Bridge that is capable of communicating synchronized time received on one

port to other ports, using the IEEE 802.1AS protocol.

5.4 linuxptp stack
Features of open source linuxptp

• Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.

• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls, including the
clock_adjtimex system call.

• Implements Boundary Clock (BC), Ordinary Clock (OC) and Transparent Clock (TC).

• Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).

• Supports IEEE 802.1AS-2011 in the role of end station.

• Modular design allowing painless addition of new transports and clock servos.

• Implements unicast operation.

• Supports a number of profiles, including:

— The automotive profile.

— The default 1588 profile.

— The enterprise profile.

— The telecom profiles G.8265.1, G.8275.1, and G.8275.2.

— Supports the NetSync Monitor protocol.

• Implements Peer to peer one-step.

• Supports bonded, IPoIB, and vlan interfaces.

Features added by OpenIL

• Supports IEEE 802.1AS-2011 in the role of time-aware bridge.

• Supports synchronization to LS1021ATSN SJA1105 switch with sja1105-tool APIs.

5.5 Quick Start for IEEE 1588

5.5.1 Ordinary clock verification
Connect two network interfaces in back-to-back manner for two boards. Make sure there is no MAC address conflict on the
boards, the IP addresses are set properly and ping the test network. Run linuxptp on each board. For example, eth0 is used
on each board.

$ ptp4l -i eth0 -m

NXP Semiconductors
IEEE 1588/802.1AS

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 69 / 199

On running the above command time synchronization will start, and the slave linuxptp selected automatically will synchronize to
master with synchronization messages displayed, such as time offset, path delay and so on.

5.5.2 Boundary clock verification
At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly and ping the test network.

Board1---eth0-----------------Board2 eth0
|
|
--eth1-----------------Board3 eth0

Run linuxptp on Board1 (boundary clock).

$ ptp4l -i eth0 -i eth1 -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above command, time synchronization will start, and the slaves linuxptp selected automatically will synchronize
to the unique master with synchronization messages displayed such as time offset, path delay and so on.

5.5.3 Transparent clock verification
At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly, and ping the test network.

Board1---eth0-----------------Board2 eth0
|
|
--eth1-----------------Board3 eth0

Run linuxptp on Board1 (transparent clock). If want Board1 works as E2E TC, use E2E-TC.cfg. If want Board1 works as P2P
TC, use P2P-TC.cfg.

$ ptp4l -i eth0 -i eth1 -f /etc/ptp4l_cfg/E2E-TC.cfg -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above commands, time synchronization will start between ordinary clocks, and the slave linuxptp selected
automatically will synchronize to the master with synchronization messages displayed such as time offset, path delay and so on.

5.6 Quick Start for IEEE 802.1AS
The following sections describe the steps for implementing IEEE 802.1AS on NXP boards.

NXP Semiconductors
IEEE 1588/802.1AS

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 70 / 199

5.6.1 Time-aware end station verification
Connect two network interfaces in back-to-back way for two boards. Make sure no MAC address conflict on the boards, IP address
set properly and ping test work.

Remove below option in /etc/ptp4l_cfg/gPTP.cfg to use default larger value, because estimate path delay including PHY delay
may exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -f /etc/ptp4l_cfg/gPTP.cfg -m

Time synchronization will start, and the slave linuxptp selected automatically will synchronize to master with synchronization
messages printed, like time offset, path delay and so on.

5.6.2 Time-aware bridge verification
At least three boards are needed. Below is an example for three boards network connection. Make sure no MAC address conflict
on the boards, IP address set properly and ping test work.

Board1---eth0-----------------Board2 eth0

|

|

--eth1-----------------Board3 eth0

Remove below option in /etc/ptp4l_cfg/gPTP.cfg to use default larger value, because estimate path delay including PHY delay
may exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on Board1 (time-aware bridge).

$ ptp4l -i eth0 -i eth1 -f /etc/ptp4l_cfg/gPTP.cfg -m

Run linuxptp on Board2/Board3 (time-aware end station).

$ ptp4l -i eth0 -m

Time synchronization will start between three boards, and the slaves linuxptp selected automatically will synchronize to the unique
master with synchronization messages printed, like time offset, path delay and so on.

NXP Semiconductors
IEEE 1588/802.1AS

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 71 / 199

5.7 Known issues and limitations
1. When LS1028A TSN switch in Linux is configured as L2 switch, the interfaces should not be configured with IP addresses.
Running linuxptp on these interfaces must use Ethernet protocol instead of UDP/IP. The method is to add an option “-2” executing
ptp4l command. For example,

$ ptp4l -i eth0 -2 -m

5.8 Long term test
No changes.

NXP Semiconductors
IEEE 1588/802.1AS

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 72 / 199

Chapter 6
NETCONF/YANG
This chapter provides an overview of the NETCONF protocol and Yang (a data modelling language for NETCONF). It describes
the applications, installation and configuration steps, operation examples, Web UI demo, and troubleshooting aspects of
NETCONF. It also describes how to enable the NETCONF feature in OpenIL.

6.1 Overview
The NETCONF protocol defines a mechanism for device management and configuration retrieval and modification. It uses a
remote procedure call (RPC) paradigm and a system of exposing device (server) capabilities, which enables a client to adjust to
the specific features of any network equipment. NETCONF further distinguishes between state data (which is read-only) and
configuration data (which can be modified). Any NETCONF communication happens on four layers as shown in the table below.
XML is used as the encoding format.

Table 21. The NETCONF layers

Layer Purpose Example

1 Content Configuration data, Notification data

2 Operations <edit-config>

3 Messages <rpc>, <rpc-reply>, <notification>

4 Secure Transport SSH, TLS

YANG is a standards-based, extensible, hierarchical data modeling language that is used to model the configuration and state
data used by NETCONF operations, remote procedure calls (RPCs), and server event notifications. The device configuration
data are stored in the form of an XML document. The specific nodes in the document as well as the allowed values are defined
by a model, which is usually in YANG format or possibly transformed into YIN format with XML-based syntax. There are many
such models created directly by IETF to further support standardization and unification of the NETCONF interface of the common
network devices. For example, the general system settings of a standard computer are described in the IETF-system model
(rfc7317) or the configuration of its network interfaces defined by the IETF-interfaces model (rfc7223). However, it is common for
every system to have some specific parts exclusive to it. In that case there are mechanisms defined to enable extensions while
keeping the support for the standardized core. Also, as this whole mechanism is designed in a liberal fashion, the configuration
does not have to concern strictly network. Even RPCs additional to those defined by NETCONF can be characterized, thus
allowing the client to request an explicit action from the server.

A YANG module defines a data model through its data, and the hierarchical organization of and constraints on that data. A module
can be a complete, standalone entity, or it can reference definitions in other modules and sub-modules as well as augment other
data models with additional nodes. The module dictates how the data is represented in XML.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines relationships between and
constraints on the data. This enables you to create syntactically correct configuration data that meets constraint requirements
and enables you to validate the data against the model before uploading it and committing it on a device.

For information about NETCONF, see RFC 6241, NETCONF Configuration Protocol.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF), and related RFCs.

6.2 Netopeer2

6.2.1 Overview
Netopeer2 is a set of tools implementing network configuration tools based on the NETCONF Protocol. This is the second
generation of the toolset, originally available as the Netopeer project. It is based on the new generation of the NETCONF and

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 73 / 199

https://tools.ietf.org/html/rfc7317
https://tools.ietf.org/html/rfc7223
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6020
https://github.com/CESNET/Netopeer2/tree/v0.7-r2

YANG libraries - libyang and libnetconf2. The Netopeer2 server uses sysrepo as a NETCONF datastore implementation. In
OpenIL-V1.7, version v0.7-r2 was used. It allows developers to control their devices via NETCONF and operators to connect to
their NETCONF-enabled devices.

Figure 20. High level architecture of Netopeer and sysrepo

6.2.2 Sysrepo
Sysrepo is an YANG-based configuration and operational state data store for Unix/Linux applications.

Applications can use sysrepo to store their configuration modeled by provided YANG model instead of using e.g. flat configuration
files. In OpenIL-V1.7, version v0.7.8 was used. Sysrepo will ensure data consistency of the data stored in the datastore and
enforce data constraints defined by YANG model. Applications can currently use C language API of sysrepo Client Library to
access the configuration in the datastore, but the support for other programming languages is planed for later too (since
sysrepo uses Google Protocol Buffers as the interface between the datastore and client library, writing of a native client library
for any programing language that supports GPB is possible).

For information about sysrepo, see:

http://www.sysrepo.org/static/doc/html/index.html

6.2.3 Netopeer2 server
Netopeer2 software is a collection of utilities and tools to support the main application, Netopeer2 server, which is a NETCONF
server implementation. It uses libnetconf2 for all NETCONF communication. Conforming to the relevant RFCs2 and still being
part of the aforementioned library, it supports the mandatory SSH as the transport protocol but also TLS. Once a client successfully
connects using either of these transport protocols and establishes a NETCONF session, it can send NETCONF RPCs and the
Netopeer2 server responds with correct replies.

The following set of tools are a part of the Netopeer server:

• Netopeer2-keystored as a tool for the storage and process of keys.

• Netopeer2-server as the main service daemon integrating the SSH/TLS server.

6.2.4 Netopeer2 client
Netopeer2-cli is a CLI interface that allows you to connect to a NETCONF-enabled device and obtain and manipulate its
configuration data.

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 74 / 199

https://github.com/sysrepo/sysrepo/tree/v0.7.8
http://tools.ietf.org/html/rfc6020
https://github.com/sysrepo/sysrepo/blob/v0.7.8/inc/sysrepo.h
https://developers.google.com/protocol-buffers/
http://www.sysrepo.org/static/doc/html/index.html

This application is a part of the Netopeer2 software bundle, but compiled and installed separately. It is a NETCONF client with
a command line interface developed and primarily used for Netopeer2 server testing, but allowing all the standards and even
some optional features of a full-fledged NETCONF client.

Netopeer2-cli serves as a generic NETCONF client providing a simple interactive command line interface. It allows you to
establish a NETCONF session with a NETCONF-enabled device on the network and to obtain and manipulate its configuration
data.

6.2.5 Workflow in application practice
In practical application, we use the YANG language to model the device and generate the YANG model. The model is then
instantiated to generate configuration files in XML format. The device was then configured using this configuration file as input
via netopeer.

Figure 21. Workflow for netopeer

6.3 Installing Netopeer2-cli on Ubuntu18.04
Use the following steps for installing Netopeer2-cli onUbuntu18.04 operating systems.

1. Install the following packages:

$ sudo apt install -y git cmake build-essential bison autoconf dh-autoreconf flex
$ sudo apt install -y libavl-dev libprotobuf-c-dev protobuf-c-compiler zlib1g-dev
$ sudo apt install -y libgcrypt20-dev libssh-dev libev-dev libpcre3-dev

2. Install libyang:

$ git clone https://github.com/CESNET/libyang.git
$ cd libyang;
$ git checkout v1.0-r4 -b v1.0-r4
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

3. Install sysrepo(v0.7.8):

$ git clone https://github.com/sysrepo/sysrepo.git
$ cd sysrepo
$ git checkout v0.7.8 -b v0.7.8

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 75 / 199

$ mkdir build; cd build
$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

4. Install libnetconf2:

$ git clone https://github.com/CESNET/libnetconf2.git
$ cd libnetconf2
$ git checkout v0.12-r2 -b v0.12-r2
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

5. Install protobuf:

$ git clone https://github.com/protocolbuffers/protobuf.git
$ cd protobuf
$ git submodule update --init --recursive
$./autogen.sh
$./configure
$ make
$ sudo make install
$ sudo ldconfig # refresh shared library cache.

6. Install Netopeer2-cli(v0.7-r2):

$ git clone https://github.com/CESNET/Netopeer2.git
$ cd Netopeer2
$ git checkout v0.7-r2 -b v0.7-r2
$ cd cli
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .
$ make
$ sudo make install

6.4 Configuration

6.4.1 Enabling NETCONF feature in OpenIL
Build the image using the below command to enable the NETCONF feature:

make nxp_ls1028ardb-64b_defconfig

or

make nxp_ls1021atsn_defconfig

Users can find detailed configuration with the make menuconfig command, as shown below:

Target packages ->
 Hardware handling --->
 NXP QorIQ libraries --->
 -*- qoriq-netopeer2-keystored
 -*- qoriq-netopeer2-server
 [*] qoriq-sysrepo-tsn

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 76 / 199

sysrepo-tsn is daemon application to implement tsn configuration based on sysrepo. It was enabled in
nxp_ls1028ardb-64b_defconfig and nxp_ls1021atsn_defconfig.

• For LS1028ARDB board, Qbv, Qbu, Qci, stream identification in CB, IP, MAC, and VLAN are supported.

• For LS1021ATSN board, Qbv, IP, MAC and VLAN are supportet.

• sysrepo-tsn was only verified in environment build by nxp_ls1028ardb-64b_defconfig and
nxp_ls1021atsn_default configuration.

 NOTE

6.4.2 Netopeer2-server
The netopeer2-server is the NETCONF protocol server running as a system daemon. The netopeer2-server is based on sysrepo
and libnetconf2 library.

• -U listen locally on a unix socket

• -d debug mode (do not daemonize and print verbose messages to stderr instead of syslog)

• -V: Show program version.

• -v level verbose output level(0 : errors, 1 : errors and warnings, 2 : errors, warnings and verbose messages).

6.4.3 Netopeer2-cli
The netopeer2-cli is command line interface similar to the NETCONF client. It serves as a generic NETCONF client providing a
simple interactive command line interface. It allows user to establish a NETCONF session with a NETCONF-enabled device on
the network and to obtain and manipulate its configuration data. netopeer2-cli is limited to a single NETCONF connection at a
time via a forward or a reverse (Call Home) connecting method.

6.4.3.1 Netopeer2 CLI commands

Following are the Netopeer2 CLI commands:

1. help: Displays a list of commands. The --help option is also accepted by all commands to show detailed information about
the command.

2. connect: Connects to a NETCONF server.

connect [--help] [--ssh] [--host <hostname>] [--port <num>] [--login <username>]

The connect command has the following arguments:

• --login username: Specifies the user to log in as on the NETCONF server. If not specified, current local username is
taken.

• --port num

— Port to connect to on the NETCONF server. By default, port 830 for SSH or 6513 for TLS transport is used.

• host

— Hostname or ip-address of the target NETCONF server.

3. disconnect: disconnects from a NETCONF server.

4. commit

• Performs the NETCONF commit operation. For details, see RFC 6241 section 8.3.4.1.

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 77 / 199

5. copy-config: Performs NETCONF copy-config operation. For details, see RFC 6241 section 7.3.

copy-config [--help] --target running|startup|candidate|url:<url> (--source running|startup|
candidate|url:<url> | --src-config[=<file>])
 [--defaults report-all|report-all-tagged|trim|explicit]

Where, the arguments are the following:

• --defaults mode: Use: with the -defaults capability with specified retrieval mode. For details, refer to the RFC 6243
section 3 or WITH-DEFAULTS section of this manual.

• --target datastore: Specifies the target datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

• --source datastore: Specifies the source datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

6. delete-config Performs NETCONF delete-config operation. For more details see RFC 6241 section 7.4.

delete-config [--help] --target startup|url:<url>

Where

• target datastore: Specifies the target datastore for the delete-config operation.

7. edit-config

Performs NETCONF edit-config operation. For details, see RFC 6241 section 7.2.

edit-config [--help] --target running|candidate (--config[=<file>] | --url <url>)
 [--defop merge|replace|none] [--test set|test-only|test-then-set] [--error stop|continue|
rollback]

Where

• --defop operation

— Specifies default operation for applying configuration data.

— merge: Merges configuration data at the corresponding level. This is the default value.

— replace: Edits configuration data completely replaces the configuration in the target datastore.

— none: The target datastore is unaffected by the edit configuration data, unless and until the edit configuration
data contains the operation attribute to request a different operation. For more info, see the EDIT-CONFIG
section of this document.

ITo delete non-madatory items, nc:operation="delete" needs to be added into the end of start tag of the item to be
deleted. At the same time, the namespace xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" also needs to be
added ioto start tag of the root node. Mandatory items can't be deleted individually, they can only be deleted with
their parent node.

 NOTE

• --error action

— Sets reaction to an error.

— Stop: Aborts the operation on first error. This is the default value.

— Continue: Continues to process configuration data on error. The error is recorded and negative response is
returned.

— Rollback: Stops the operation processing on error and restore the configuration to its complete state at the start
of this operation. This action is available only if the server supports rollback-on-error capability (see RFC 6241
section 8.5).

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 78 / 199

• --test option

— Performs validation of the modified configuration data. This option is available only if the server
supports :validate:1.1 capability (see RFC 6241 section 8.6).

— set: Does not perform validation test.

— test-only: Does not apply the modified data, only perform the validation test.

— test-then-set: Performs a validation test before attempting to apply modified configuration data. This is the default
value.

• --config file

— Specify path to a file containing edit configuration data. The content of the file is placed into the config element
of the edit-config operation. Therefore, it does not have to be a well-formed XML document with only a single
root element. If neither --config nor --url is specified, user is prompted to write edit configuration data manually.
For examples, see the EDIT-CONFIG section of this document.

• --url URI

— Specifies remote location of the file containing the configuration data hierarchy to be modified, encoded in XML
under the element config in the urn:ietf:params:xml:ns:netconf:base:1.0 namespace. Note, that this
differs from file parameter, where the config element is not expected.

• --target

— Target datastore to modify. For description of possible values, refer to Netopeer2 CLI datastore. Note that the
url configuration datastore cannot be modified.

8. get: Performs NETCONF get operation. Receives both the status as well as configuration data from the current running
datastore. For more details see RFC 6241 section 7.7. The command format is as follows:

get [--help] [--filter-subtree[=<file>] | --filter-xpath <XPath>] [--defaults report-all|report-
all-tagged|trim|explicit] [--out <file>]

• --defaults mode

— Use with the -defaults capability with specified retrieval mode. For more details see RFC 6243 section 3 or
WITH-DEFAULTS section of this manual.

• --filter [file]

— Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path to the
file containing the filter specification. If the path is not specified, user is prompted to write the filter specification
manually.

9. get-config Performs NETCONF get-config operation. Retrieves only configuration data from the specified
target_datastore. For details, refer to RFC 6241 section 7.1.

get-config [--help] --source running|startup|candidate [--filter-subtree[=<file>] | --filter-
xpath <XPath>]
 [--defaults report-all|report-all-tagged|trim|explicit] [--out <file>]

10. --defaults mode

• Use: with the -defaults capability with specified retrieval mode. For more details see RFC 6243 section 3 or WITH-
DEFAULTS section of this manual.

11. --filter [file]

• Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path to the file
containing the filter specification. If the path is not specified, user is prompted to write the filter specification manually.

12. --target

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 79 / 199

• Target datastore to retrieve. For description of possible values, refer to Netopeer2 CLI datastore. Note, that the url
configuration datastore cannot be retrieved.

13. lock

Performs the NETCONF lock operation to lock the entire configuration datastore of a server. For details, see RFC 6241
section 7.5.

lock [--help] --target running|startup|candidate

Where the

• --target: specifies the target datastore to lock. For description of possible values, refer to Netopeer2 CLI datastore.
Note, that the url configuration datastore cannot be locked.

14. unlock: Performs the NETCONF unlock operation to release a configuration lock, previously obtained with the lock
operation. For more details see RFC 6241 section 7.6.

unlock [--help] --target running|startup|candidate

where

• --target: specifies the target datastore to unlock. For description of possible values, refer to Netopeer2 CLI
datastore. Note, that the url configuration datastore cannot be unlocked.

15. verb

• Enables/disables verbose messages.

16. quit

• Quits the program.

6.4.3.2 Netopeer2 CLI datastore

Following are the netopeer2 CLI datastores:

• running

— This is the base NETCONF configuration datastore holding the complete configuration currently active on the device.
This datastore always exists.

• startup

— The configuration datastore holding the configuration loaded by the device when it boots. This datastore is available
only on servers that implement the :startup capability.

• candidate

— The configuration datastore that can be manipulated without impacting the device's current configuration and that can
be committed to the running configuration datastore. This datastore is available only on servers that
implement :candidate capability.

• url:URI

— Refers to a remote configuration datastore located at URI. The file that the URI refers to contains the configuration data
hierarchy to be modified, encoded in XML under the element config in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace. This datastore is available only on servers that
implement the :url capability.

6.4.4 Sysrepod
Sysrepo deamon provides the functionality of the datastore on the system (executes the system-wide Sysrepo Engine) and should
normally be automatically started by system startup. However, auto-start is not configured by cmake install operation and you
need to configure it yourself, accroding to the guidelines of your system.

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 80 / 199

Usage: sysrepod [-h] [-v] [-d] [-l <level>]

Options:

• -h Prints usage help.

• -v Prints version.

• -d Debug mode - daemon will run in the foreground and print logs to stderr instead of syslog.

• -l <level> Sets verbosity level of logging:

0 = all logging turned off

1 = log only error messages

2 = (default) log error and warning messages

3 = log error, warning and informational messages

4 = log everything, including development debug messages

6.4.5 Sysrepocfg
sysrepocfg is a command-line tool for editing, importing and exporting configuration stored in Sysrepo datastore. It allows the
user to edit startup or running configuration of specified module in preferred text editor and to propagate the perfomed changes
into the datastore transparently for all subscribed applications. Moreover, the user can export the current configuration into a file
or get it printed to the standard output and, similarly, an already prepared configuration can be imported from a file or read from
the standard input.

In the background, sysrepocfg uses Sysrepo client library for any data manipulation rather than directly accessing configuration
data files, thus effectively inheriting all main features of Sysrepo, such as YANG-based data validation, full transaction and
concurrency support, and, perhaps most importantly, subscribed applications are notified about the changes made using
\fBsysrepocfg\fP and can immediately take the new configuration into account.

6.4.6 Sysrepoctl
The sysrepoctl provides fuctions to manage modules. It can be configured using the options and commands described below.

operation-operations

• --help: Prints the generic description and a list of commands. The detailed description and list of arguments for the specific
command are displayed by using --help argument of the command.

• --install: Installs specified schema into sysrepo (--yang or --yin must be specified).

• --uninstall: Uninstalls specified schema from sysrepo (--module must be specified).

• --list: Lists YANG modules installed in sysrepo (note that Conformance Installed implies also Implemented).

• --change : Changes specified module in sysrepo (--module must be specified).

• --feature-enable: Enables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

• --feature-disable: Disables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

Other-options

• --yang : Path to the file with schema in YANG format (--install operation).

• --yin : Path to the file with schema in YIN format (--install operation).

• --module : Name of the module to be operated on (--change, --feature-enable, --feature-disable operations, --uninstall -
several modules can be delimited with ',').

• --permissions : Access permissions of the module's data in chmod format (--install, --change operations).

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 81 / 199

Examples

• Install a new module by specifying YANG file, ownership and access permissions:

sysrepoctl --install --yang=/home/user/ietf-interfaces.yang --owner=admin:admin --permissions=644

• Change the ownership and permissions of an existing YANG module:

sysrepoctl --change --module=ietf-interfaces --owner=admin:admin --permissions=644

• Enable a feature within a YANG module:

sysrepoctl --feature-enable=if-mib --module=ietf-interfaces

• Uninstall 2 modules, second one is without revision:

sysrepoctl --uninstall --module=mod-a,mod-b --revision=2035-05-05

6.4.7 Operation examples
The following figure describes the steps to configure device via netopeer2:

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 82 / 199

Figure 22. Steps to configure device via netopeer2

In sysrepo-tsn, there are some instance files to configure TSN features on LS1028ARDB board:

• Instance files for TSN configuration

Users can configure TSN functions of LS1028ARDB board using these instance files. Before starting, make sure that sysrepod,
sysrepo-plugind, sysrepo-tsn and netopeer2-server are running on the board. Use the following steps to configure TSN feature
on LS1028ARDB board.

1. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli

2. Connect to netopeer2-server on LS1028ARDB board (use the IP on LS1028ARDB, here 10.193.20.53 is example):

> connect --login root --host 10.193.20.53

3. Get status data of server:

> get

4. Get configuration data in running datastore:

> get-config --source running

5. Cofigure QBV feature of LS1028ARDB with qbv-eno0-enable.xml

> edit-config --target running --config=qbv-eno0-enable.xml

6. Check configuration data of QBV:

> get-config --source running --filter-xpath /ietf-interfaces:interfaces/interface[name='eno0']/
ieee802-dot1q-sched:gate-parameters

7. Copy configuration data in running datastore to startup datastore:

> copy-config --source running --target startup

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 83 / 199

https://github.com/openil/sysrepo-tsn
https://github.com/openil/sysrepo-tsn/tree/master/Instances
https://github.com/openil/sysrepo-tsn/blob/master/Instances/qbv-eno0-enable.xml

8. Disconnect with netopeer2-server:

> disconnect

6.4.8 Application scenarios

1. Prerequisites

a. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli

b. Connect to notopeer2-server:

> connect --login root --host 10.193.20.53

2. Config IP address

a. Edit configuration file, change Ethernet interface name and IP:

$ vim ietf-ip-cfg.xml

b. Send configuration file:

> edit-config --target running --config=ietf-ip-cfg.xml

3. Config MAC address for bridge

a. Create a bridge named br1

$ ip link add name br1 type bridge

b. Edit configuration file, change bridge name and MAC:

$ vim ietf-mac-cfg.xml

c. Send configuration file:

> edit-config --target running --config=ietf-mac-cfg.xml

4. Add VLAN for Ethernet interface

a. Create a bridge named br1

$ ip link add name br1 type bridge

b. Edit configuration file, change interface name and VLAN ID:

$ vim ietf-vlan-cfg.xml

c. Send configuration file:

> edit-config --target running --config=ietf-vlan-cfg.xml

5. Config Qbv via tc flower (only for LS1021ATSN)

a. Edit configuration file, change interface name and VLAN ID:

$ vim qbv-swp5-tc.xml

b. Send configuration file:

> edit-config --target running --config=qbv-swp5-tc.xml

Note: If want to use tc flower instead of tsntool, should enable the following definition in menuconfig:

 config BR2_PACKAGE_QORIQ_SYSREPO_TSN_TC
 bool "enable tc command to configure tsn"

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 84 / 199

6. Config VLAN ID and priority filter (only for LS1028ARDB)

a. Edit configuration file, change interface name and action_spec:

$ vim ietf-br-vlan-cfg.xml

b. Send configuration file:

> edit-config --target running --config=ietf-br-vlan-cfg.xml

7. Config stream police and rate limit (only for LS1028ARDB)

a. Edit configuration file, change interface name and action_spec:

$ vim ietf-police-rate.xml

b. Send configuration file:

> edit-config --target running --config=ietf-police-rate.xml

6.5 Web UI demo
The Web UI allows the remote control of the YANG model. This demo is already added to tsntool (https://github.com/openil/
tsntool) in the folder tsntool/demos/cnc/. Follow the procedure mentioned below for this demo.

1. Install related libraries

Suppose you are installing the demo on a Centos PC or Ubuntu PC as the WebServer. CNC demo requires python3 and
related libraries:pyang, libnetconf, and libssh.

For Ubuntu18.04

$ sudo apt install -y libtool python-argparse libtool-bin python-sphinx libffi-dev
$ sudo apt install -y libxslt1-dev libcurl4-openssl-dev xsltproc python-setuptools
$ sudo apt install -y zlib1g-dev libssl-dev python-libxml2 libaugeas-dev
$ sudo apt install -y libreadline-dev python-dev pkg-config libxml2-dev
$ sudo apt install -y cmake openssh-server
$ sudo apt install -y python3-sphinx python3-setuptools python3-libxml2
$ sudo apt install -y python3-pip python3-dev python3-flask python3-pexpect
$ sudo apt install -y libnss-mdns avahi-utils

For Centos 7.2

$ sudo yum install libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-devel
$ sudo yum install doxygen libevent readline.x86_64 ncurses-libs.x86_64
$ sudo yum install ncurses-devel.x86_64 libssh.x86_64 libssh2-devel.x86_64
$ sudo yum install libssh2.x86_64 libssh2-devel.x86_64
$ sudo yum install nss-mdns avahi avahi-tools

2. Install pyang

$ git clone https://github.com/mbj4668/pyang.git
$ cd pyang
$ git checkout b92b17718de53758c4c8a05b6818ea66fc0cd4d8 -b fornetconf1
$ sudo python setup.py install

3. Install libssh

$ git clone https://git.libssh.org/projects/libssh.git
$ cd libssh
$ git checkout fe18ef279881b65434e3e44fc4743e4b1c7cb891 -b fornetconf1
$ mkdir build; cd build/
$ cmake ..

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 85 / 199

https://github.com/openil/tsntool
https://github.com/openil/tsntool

$ make
$ sudo make install

There is a version issue for libssh installation on Ubuntu below version 16.04. Apt-get install libssh may get
version 0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall by downloading
the source code and installing it manually.

 NOTE

4. Install libnetconf

$ git clone https://github.com/CESNET/libnetconf.git
$ cd libnetconf
$ git checkout 8e934324e4b1e0ba6077b537e55636e1d7c85aed -b fornetconf1
$ autoreconf --force --install
$./configure
$ make
$ sudo make install

5. Get tsntool source code

git clone https://github.com/openil/tsntool.git
cd tsntool/demos/cnc/

6. Install python library

In the below command segments,

• PATH-to-libnetconf is the path to the libnetconf source code.

• PATH-to-tsntool is the path to the tsntool source code.

$ cd PATH-to-libnetconf/libnetconf

The libnetconf needs to add two patches based on the below commit point to fix the demo python support.

Ensure that the commit id is 313fdadd15427f7287801b92fe81ff84c08dd970.

$ git checkout 313fdadd15427f7287801b92fe81ff84c08dd970 -b cnc-server
$ cp PATH-to-tsntool/demos/cnc/*patch .
$ git am 0001-lnctool-to-make-install-transapi-yang-model-proper.patch
$ git am 0002-automatic-python3-authorizing-with-root-password-non.patch
$ cd PATH-to-libnetconf/libnetconf/python
$ python3 setup.py build; sudo python3 setup.py install

If rebuilding python lib, you need to remove the build folder by command rm build -rf before rebuilding. On
the OpenIL board, avahi-daemon and netopeer server are required. Remember to also add the netopeer2-server
run at boards.

 NOTE

7. Setup avahi daemon and disable the ipv6:

For this, edit /etc/avahi/avahi-daemon.conf

use-ipv6=no
publish-a-on-ipv6=no

sudo systemctl start avahi-daemon.service
#If the hostname is not the OpenIL, change to OpenIL
avahi-set-host-name OpenIL

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 86 / 199

https://github.com/openil/tsntool.git

8. Packages required by OpenIL Board

On the OpenIL board, avahi-daemon, and netopeer server are required:
BR2_PACKAGE_AVAHI=y
BR2_PACKAGE_AVAHI_AUTOIPD=y
BR2_PACKAGE_AVAHI_DAEMON=y
BR2_PACKAGE_AVAHI_LIBDNSSD_COMPATIBILITY=y
BR2_PACKAGE_NSS_MDNS=y
BR2_PACKAGE_NETOPEER2_SERVER=y

Openil update the netopeer server to version2. Remember to make the netopeer2-server run at boards.

9. Start the web server

• Input the command below at shell into the folder /tsntool/demos/cnc/:

sudo python3 cnc.py

• Then, input the IP of WebServer with the port 8180 at browser. For example:

http://10.193.20.147:8180

• It is recommended to tracking the boards by tsntool to checking the real configuration for comparison.

• It is also recommended to tracking if the netopeer2-server is running ata board or not.

Limitations of Web UI are:

• Setup server on a Centos PC or Ubuntu PC could be more compatible.

• Supports Qbv, Qbu and Qci in current version.

• For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or
else, you will got failure for setting Stream-filter without a stream gate id link to.

• The boards and the web server PC are required to be in same IP domain since the bridge may block the
probe frames.

 NOTE

6.6 Troubleshooting
1. Connect fails at client side:

nc ERROR: Remote host key changed, the connection will be terminated!
nc ERROR: Checking the host key failed.
cmd_connect: Connecting to the 10.193.20.4:830 as user "root" failed.

Fixing:

The reason is that the SSHD key changed at the server.

• You need to get host list with command knownhosts first.

• Then remove related item. For example knownhosts --del 19.

2. Request could not be completed because the relevant data model content does not exist.

type: application
tag: data-missing
severity: error
path: /ietf-interfaces:interfaces/interface[name='eno0']/ieee802-dot1q-sched:gate-parameters/
admin-gate-states
message: Request could not be completed because the relevant data model content does not exist.

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 87 / 199

Fixing:

The reason is that the configuration data in xpath does not exist in the datastore. Such as deleting a node that does not exist.

When encountering such an error, user can get configuration data in the board with get-config command, and check
whether the operation type(add/delete/modify) of the node in the path is reasonable or not,.

NXP Semiconductors
NETCONF/YANG

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 88 / 199

Chapter 7
OPC UA
OPC (originally known as “OLE for Process Control”, now “Open Platform Communications”) is a collection of multiple
specifications, most common of which is OPC Data Access (OPC DA).

OPC Unified Architecture (OPC UA) was released in 2010 by the OPC Foundation as a backward incompatible standard to OPC
Classic, under the name of IEC 62541.

OPC UA has turned away from the COM/DCOM (Microsoft proprietary technologies) communication model of OPC Classic, and
switched to a TCP/IP based communication stack (asynchronous request/response), layered into the following:

• Raw connections

• Secure channels

• Sessions

7.1 OPC introduction
OPC UA defines:

• The transport protocol for communication (that can take place over HTTP, SOAP/XML or directly over TCP).

• A set of 37 'services' that run on the OPC server, and which clients call into, via an asynchronous request/response RPC
mechanism.

• A basis for creating information models of data using object-oriented concepts and complex relationships.

The primary goal of OPC is to extract data from devices in the easiest way possible.

The Information Model provides a way for servers to not only provide data, but to do so in the most self-explanatory and intuitive
way possible.

Further references to 'OPC' in this document will imply OPC UA. OPC Classic is not discussed in this document.

 NOTE

Following are the typical scenarios for embedding an OPC-enabled device into a project:

• Manually investigate (“browse”) the server’s Address Space looking for the data you need using a generic, GUI client (such
as UaExpert from Unified Automation, or the FreeOpcUa covered in this chapter).

• Using References and Attributes, understand the format it is in, and the steps that may be needed to convert the data.

• Have a custom OPC client (integrated into the application) subscribe directly to data changes of the node that contains the
desired data.

In a typical use case:

• The OPC server runs near the source of information (in industrial contexts, this means near the physical process – for
example, on a PLC on a plant floor).

• Clients consume the data at run time (for example, logging into a database, or feeding it into another industrial process).

OPC-enabled applications can be composed: an industrial device may run an OPC client and feed the collected data into another
physical process, while also exposing the latter by running an OPC server.

7.2 The node model
Data in an OPC server is structured in Nodes. The collection of all nodes that an OPC server exposes to its clients is known as
an Address Space. Some nodes have a predefined meaning, while others have meaning that is unique to the Information Model
of that specific OPC server.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 89 / 199

Every Node has the following Attributes:

• an ID (unique)

• a Class (what type of node it is)

• a BrowseName (a string for machine use)

• a DisplayName (a string for human use)

Figure 23. OPC UA address space

Shown on the left-hand side of the figure is the Address Space (collection of information that the server makes available to clients)
of the OPC server found at opc.tcp://192.168.15.4:16664.

Selected is a node with NodeID ns=1;i=118, BrowseName=1:SJA1105 and of NodeClass Object.

The full path of the selected node is 0:Root,0:Objects,1:SJA1105.

7.3 Node Namespaces
Namespaces are the means for separating multiple Information Models present in the same Address Space of a server.

• Nodes that do not have the ns= prefix as part of the NodeID have an implicit ns=0; prefix (are part of the namespace zero).

• Nodes in namespace * 0 have NodeID’s pre-defined by the OPC UA standard. For example, the 0:Server object, which
holds self-describing information (capabilities, diagnostics, and vendor information), has a predefined NodeID of
ns=0;i=2253;.

It is considered a good practice to not alter any of the nodes exposed in the namespace * 0.

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 90 / 199

7.4 Node classes
OPC nodes have an inheritance model, based on their NodeClass.

There are eight base node classes defined by the standard:

• Object

• Variable

• Method

• View

• ObjectType

• VariableType

• ReferenceType

• DataType

All nodes have the same base Attributes (inherited from the Node object), plus additional ones depending on their NodeClass.

7.5 Node graph and references
It may appear that nodes are only chained hierarchically, in a simple parent-child relationship. However, in reality nodes are
chained in a complex directed graph, through References to other nodes.

Figure 24. Hierarchy of the standard ReferenceTypes, defined in Part 3 of the OPC UA specification (Image taken from
www.open62541.org)

In OPC, even ReferenceTypes are Nodes, and as such are structured hierarchically, as can be seen in the figure above.

The definitions of all OPC ReferenceTypes can be found under the 0:Root,0:Types,0:ReferenceTypes path.

The semantics of OPC references can be enriched by creating custom ReferenceType nodes.

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 91 / 199

Figure 25. The 'Attributes' and 'References' views of the FreeOpcUa Client populated with details of the RGMII4 node

Selected in the Address Space is node ns=1;i=197. Conceptually, this represents one of the five Ethernet ports of the SJA1105
TSN switch.

Its NodeClass is Object, but it has a reference of type HasTypeDefinition to NodeID ns=1;i=117 which is 1:EthPortType. For
this reason, the 1:RGMII4 node is of the custom ObjectType EthPortType.

7.6 Open62541
OpenIL integrates the Open62541 software stack (https://open62541.org/). This supports both server-side and client-side API
for OPC UA applications. Only server-side capabilities of open62541 are being shown here.

Open62541 is distributed as a C-based dynamic library (libopen62541.so). The services run on pthreads, and the application
code runs inside an event loop.

When building with the BR2_PACKAGE_OPEN62541_EXAMPLES flag, the following Open62541 example applications are
included in the OpenIL target image:

• open62541_client

• open62541_server_instantiation

• open62541_tutorial_client_firststeps

• open62541_tutorial_server_firststeps

• open62541_tutorial_server_variable

• open62541_server

• open62541_server_mainloop

• open62541_tutorial_datatypes

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 92 / 199

https://open62541.org/

• open62541_tutorial_server_method

• open62541_tutorial_server_variabletype

• open62541_server_inheritance

• open62541_server_repeated_job

• open62541_tutorial_server_datasource

• open62541_tutorial_server_object

7.7 Example of a server application: OPC SJA1105
In addition to the default Open62541 examples, OpenIL includes an application for monitoring the SJA1105 traffic counters on
the LS1021A-TSN board. It can be started by running:

[root@openil] $ /usr/bin/opc-sja1105

The application’s information model hierarchically describes the per-port traffic counters of the L2 switch under the 1:SJA1105
node.

On the server, a repeated job runs once per second, reads the port counters over SPI, and manually updates the port counter
nodes.

7.8 FreeOpcUa Client GUI
FreeOpcUa (http://freeopcua.github.io/) is another open source framework for OPC UA communication (both server- and client-
side). For this example, the client GUI available at https://github.com/FreeOpcUa/opcua-client-gui can be used to interact with
the opc-sja1105 server application from OpenIL.

1. Follow the instructions from the opcua-client-gui README.md to install it on a host PC (either Windows or GNU/
Linux). As noted, a Python runtime with Qt5 support is required.

2. In Windows, navigate to the location of your WinPython installation, and open WinPython Command Prompt.exe.

3. Execute the following command:

opcua-client

The FreeOpcUa client GUI window pops up.

4. In the address drop-down input field, insert the following text:

 opc.tcp://192.168.15.2:16664

After selecting Connect, a connection to the OPC UA server running on Board 2 is established.

5. In the OPC UA client, navigate to the node Root -> Objects -> SJA1105 TSN Switch -> RGMII2 -> Traffic Counters ->
ETH3 ::: N_TXBYTE. This should correspond to the Node ID ns=1;i=173. Right click on this node, and select Subscribe
to data change.

6. After this step, the OPC UA client should look like this:

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 93 / 199

http://freeopcua.github.io/
https://github.com/FreeOpcUa/opcua-client-gui

Figure 26. Subscribing to data changes of the ETH3 ::: N_TXBYTE node of the OPC-SJA1105 server

In the FreeOpcUa GUI, it is possible to create subscriptions to Data Changes on port counters of interest (by right-clicking on the
individual nodes in the Address Space).

A dedicated OPC client might run custom code upon receiving Data Change notifications from the server, whereas the FreeOpcUa
GUI only displays the updated values.

Figure 27. Data change notification

The preceding figure shows the Data Change Subscriptions to two counters: the Tx Frames of the L2 switch towards the LS1021,
and the Tx Bytes towards chassis port ETH5.

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 94 / 199

Note that the subscribed value of ETH5 ::: N_TXBYTE (48259) is higher than the Value of its Attribute (47849). This is because
the Subscriptions view updates automatically, while the Attributes do not.

NXP Semiconductors
OPC UA

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 95 / 199

Chapter 8
TSN
Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards compatible with
IEEE 802.1 and 802.3. These extensions are intended to address the limitations of standard Ethernet in sectors ranging from
industrial and automotive applications to live audio and video systems.Applications running over traditional Ethernet must be
designed very robust in order to withstand corner cases such as packet loss, delay or even reordering. TSN aims to provide
guarantees for deterministic latency and packet loss under congestion, allowing critical and non-critical traffic to be converged
in the same network.

This chapter describes the process and use cases for implementing TSN features on the LS1021ATSN and the LS1028ARDB
boards.

8.1 Using TSN features on LS1028ARDB
The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files /usr/bin/tsntool
and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

8.1.1 Tsntool User Manual
Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document describes how
to use tsntool for NXP's LS1028ARDB hardware platform.

Currently the Tsntool supports only the LS1028ARDB platform. Other hardware platforms might be supported in
future.

 NOTE

8.1.1.1 Getting the source code

Github of the tsntool code is:

https://github.com/openil/tsntool.git

8.1.1.2 Tsn tool commands

The following table lists the TSN tool commands and their description.

Table 22. TSN tool commands and their description

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

qbvset Sets time gate scheduling config for <ifname>

qbvget Gets time scheduling entries for <ifname>

cbstreamidset Sets stream identification table

Table continues on the next page...

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 96 / 199

https://github.com/openil/tsntool.git

Table 22. TSN tool commands and their description (continued)

Command Description

cbstreamidget Gets stream identfication table and counters

qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

qcisficounterget Gets stream filter counters

qcifmiset Sets flow metering instance

qcifmiget Gets flow metering instance

cbsset Sets TCs credit-based shaper configure

cbsget Gets TCs credit-based shaper status

qbuset Sets one 8-bits vector showing the preemptable traffic class

qbugetstatus Not supported

tsdset Not supported

tsdget Not supported

ctset Sets cut through queue status (specific for ls1028 switch)

cbgen Sets sequence generate configure (specific for ls1028 switch)

cbrec Sets sequence recover configure (specific for ls1028 switch)

dscpset Sets queues map to DSCP of Qos tag (specific for ls1028 switch)

sendpkt Not supported

regtool Register read/write of bar0 of PFs (specific for ls1028 enetc)

ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time
ptptool -g

#get ptp1 clock time
ptptool -g -d /dev/ptp1

dscpset Set queues map to DSCP of QoS tag (specific for ls1028 switch)

Table continues on the next page...

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 97 / 199

Table 22. TSN tool commands and their description (continued)

Command Description

qcicapget Gets qci instance's max capability

tsncapget Gets device's tsn capability

8.1.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 23. qbvset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--entryfile <filename> A file script to input gatelist format. It has the following arguments:

#'NUMBER' 'GATE_VALUE' 'TIME_LONG'

• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

• GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB
corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.

• TIME_LONG: # nanoseconds. Do not input 0 time long. t0 11101111b 10000 t1
11011111b 10000

Entryfile parameter must be set. If not set, there will be a vi text editor
prompt, "require to input the gate list".

 NOTE

--basetime <value> AdminBaseTime

A 64-bit hex value means nano second until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115seconds and 125us.

--cycletime <value> AdminCycleTime

--cycleextend <value> AdminCycleTimeExtension

--enable | --disable • enable: enables the qbv for this port

• disable: disables the qbv for this port

Default is set to enable, if no enable or disable input

--maxsdu <value> queueMaxSDU

--initgate <value> AdminGateStates

--configchange ConfigChange. Default set to 1.

--configchangetime <value> ConfigChangeTime

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 98 / 199

Table 24. qbvget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

Table 25. cbstreamidset

Parameter <argument> Description

--enable | --disable • enable: Enables the entry for this index.

• disable: Disables the entry for this index. Default is set to enable if no enable or disable
input

--index <value> Index entry number in this controller. Mandatory parameter.

This value corresponds to tsnStreamIdHandle on switch configuration.

--device <string> An interface such as eno0/swp0

--streamhandle <value> tsnStreamIdHandle

--infacoutport <value> tsnStreamIdInFacOutputPortList

--outfacoutport <value> tsnStreamIdOutFacOutputPortList

--infacinport <value> tsnStreamIdInFacInputPortList

--outfacinport <value> tsnStreamIdOutFacInputPortList

--nullstreamid | --
sourcemacvid | --destmacvid |
--ipstreamid

tsnStreamIdIdentificationType:

• -nullstreamid:Null Stream identification

• -sourcemacvid: Source MAC and VLAN Stream identification

• -destmacvid: not supported

• -ipstreamid: not supported

--nulldmac <value> tsnCpeNullDownDestMac

--nulltagged <value> tsnCpeNullDownTagged

--nullvid <value> tsnCpeNullDownVlan

--sourcemac <value> tsnCpeSmacVlanDownSrcMac

--sourcetagged <value> tsnCpeSmacVlanDownTagged

--sourcevid <value> tsnCpeSmacVlanDownVlan

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 99 / 199

Table 26. cbstreamidget

P

arameter <argument>
Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controler. Mandatory to have.

Table 27. qcisfiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--enable | --disable • enable: enable the entry for this index

• disable: disable the entry for this index

• default to set enable if no enable or disable input

--maxsdu <value> Maximum SDU size.

--flowmeterid <value> Flow meter instance identifier index number.

--index <value> StreamFilterInstance. index entry number in this controler.

This value corresponds to tsnStreamIdHandle of cbstreamidset command on switch
configuration.

--streamhandle <value> StreamHandleSpec

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--priority <value> PrioritySpec

--gateid <value> StreamGateInstanceID

--oversizeenable StreamBlockedDueToOversizeFrameEnable

--oversize StreamBlockedDueToOversizeFrame

Table 28. qcisfiget

parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 100 / 199

Table 29. qcisgiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--enable | --disable • enable: enable the entry for this index. PSFPGateEnabled

• disable: disable the entry for this index

• default to set enable if no enable or disable input

--configchange configchange

--enblkinvrx PSFPGateClosedDueToInvalidRxEnable

--blkinvrx PSFPGateClosedDueToInvalidRx

--initgate PSFPAdminGateStates

--initipv AdminIPV

--cycletime Default not set. Get by gatelistfile.

--cycletimeext PSFPAdminCycleTimeExtension

--basetime PSFPAdminBaseTime

A 64-bit hex value means nano second until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115seconds and 125us.

--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE_VALUE' 'IPV' 'TIME_LONG'
'OCTET_MAX'

• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

• GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds
to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.

• IPV: # 0~7

• TIME_LONG: in nanoseconds. Do not input time long as 0.

• OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If zero,
there is no maximum. t0 1b -1 50000 10

Table 30. qcisgiget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 101 / 199

Table 31. qcifmiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.

--cir <value> cir. kbit/s.

--cbs <value> cbs. octets.

--eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.

--cm cm. color mode.

--dropyellow drop yellow.

--markred_enable mark red enable.

--markred mark red.

Table 32. qcifmiget parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 33. qbuset parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--preemptable <value> 8-bit hex value. Example: 0xfe The MS bit corresponds to traffic class 7.

The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1 indicates
preemptable.

Table 34. cbsset command

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

Table continues on the next page...

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 102 / 199

Table 34. cbsset command (continued)

Parameter <argument> Description

--tc <value> Traffic class number.

--percentage <value> Set percentage of tc limitation.

--all <tc-percent:tc-percent...> Not supported.

Table 35. cbsget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

Table 36. regtool

Parameter <argument> Description

 Usage: regtool { pf number }
{ offset } [data]

pf number: pf number for the pci resource to act on

offset: offset into pci memory region to act upon

data: data to be written

Table 37. ctset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--queue_stat <value> Specifies which priority queues have to be processed in cut-through mode of operation. Bit 0
corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 38. cbgen

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport_mask <value> INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value> SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

Table continues on the next page...

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 103 / 199

Table 38. cbgen (continued)

Parameter <argument> Description

--seq_len <value> SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.

tsnSeqGenSpace = 2**SEQ_SPACE_LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--seq_num <value> GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.

Note: Only lower 16-bits are sent in RED_TAG.

Table 39. cbrec

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.

This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.

tsnSeqRecSeqSpace = 2**SEQ_REC_SPACE_LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag_pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Table 40. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disable DSCP to traffic class for frames.

--index DSCP value

--cos Priority number of queue which is mapped to

--dpl Drop level which is mapped to

Table 41. qcicapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 104 / 199

Table 42. tsncapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

8.1.1.4 Input tips

While providing the command input, you can use the following shortcut keys to make the input faster:

• When you input a command, use the TAB key to help list the related commands.

For example:

tsntool> qbv

Then press TAB key, to get all related qbv* start commands.

If there is only one choice, it is filled as the whole command automatically.

• When you input parameters, if you don’t remember the parameter name. You can just input “--” then press TAB key. It
displays all the parameters.

If you input half the parameter’s name, pressing the TAB key lists all the related names.

• History: press the up arrow “↑” . You will get the command history and can re-use the command.

8.1.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.

For example:

In the interactive mode:

tsntool> qbuset --device eno0 --preemptable 0xfe

In non-interactive mode:

tsntool qbuset --device eno0 --preemptable 0xfe

8.1.2 Kernel configuration
Before compiling the Linux kernel, we need to configure it. In the kernel, select the configuration settings displayed below:

Symbol: TSN [=y]
 [*] Networking support --->
 Networking options --->
 [*] 802.1 Time-Sensitive Networking support

Symbol: ENETC_TSN [=y] && FSL_ENETC_PTP_CLOCK [=y] && FSL_ENETC_HW_TIMESTAMPING [=y]
 Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 <*> ENETC PF driver
 <*> ENETC VF driver
 -*- ENETC MDIO driver
 <*> ENETC PTP clock driver
 [*] ENETC hardware timestamping support
 [*] TSN Support for NXP ENETC driver

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 105 / 199

Symbol: MSCC_FELIX_SWITCH_TSN [=y]
 Device Drivers --->
 [*] Network device support --->
 Distributed Switch Architecture drivers --->
 <*> Ocelot / Felix Ethernet switch support --->
 <*> TSN on FELIX switch driver

Symbol: NET_PKTGEN [=y]
 [*] Networking support --->
 Networking options --->
 Network testing --->
 <*> Packet Generator (USE WITH CAUTION)

Kernel configs for the QOS (For the command 'tc'):

Symbol: NET_SCH_MQPRIO [=y] && NET_SCH_CBS [=y] && NET_SCH_TAPRIO [=y]
 [*] Networking support --->
 Networking options --->
 [*] QoS and/or fair queueing --->
 <*> Credit Based Shaper (CBS)
 <*> Time Aware Priority (taprio) Scheduler
 <*> Multi-queue priority scheduler (MQPRIO)

Symbol: FSL_ENETC_QOS [=y]
 Device Drivers--->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 [*] ENETC hardware Time-sensitive Network support

Also require the Iproute2 version is higher version. (IProute2 at least sync with above kernel 4.19).

8.1.3 Basic TSN configuration examples on ENETC
The tsntool is an application configuration tool to configure the TSN capability. You can find the file, /usr/bin/tsntool
and /usr/lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following sections describe the TSN
configuration examples on the ENETC ethernet driver interfaces.

Before testing the ENETC TSN test cases, you need to enable mqprio by using the command:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

8.1.3.1 Linuxptp test

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)

The linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Check PTP clock and timestamping capability:

ethtool -T eno0
Time stamping parameters for eno0:
Capabilities:

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 106 / 199

 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

3. Configure the IP address and run ptp4l on two boards:

ifconfig eno0 <ip_addr>
ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print synchronization
messages.

5. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command on the boards,
instead:

ptp4l -i eno0 -p /dev/ptp0 -f gPTP.cfg -m

8.1.3.2 Qbv test

This test includes the Basic gates closing test, Basetime test, and the Qbv performance test. These are described in the following
sections.

8.1.3.2.1 Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > qbv0.txt << EOF
t0 00000000b 20000
EOF

#Explanation:
'NUMBER' : t0
'GATE_VALUE' : 00000000b
'TIME_LONG' : 20000 ns

cp libtsn.so /lib
./tsntool
tsntool> verbose
tsntool> qbvset --device eno0 --entryfile ./qbv0.txt

ethtool -S eno0
ping 192.168.0.2 -c 1 #Should not pass any frame since gates are all off.

8.1.3.2.2 Basetime test

Base on case 1 qbv1.txt gate list.

#create 1s gate
cat > qbv1.txt << EOF
t0 11111111b 10000
t1 00000000b 99990000

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 107 / 199

EOF

tsntool> regtool 0 0x18
tsntool> regtool 0 0x1c

#read the current time
tsntool> ptptool -g

#add some seconds, for example, you get 200.666 time clock, then set 260.666 as result

tsntool> qbvset --device eno0 --entryfile qbv1.txt --basetime 260.666
tsntool> qbvget --device eno0 #You can check configchange time
tsntool> regtool 0 0x11a10 #Check pending status, 0x1 means time gate is working

#Waiting to change state, ping remote computer
ping 192.168.0.2 -A -s 1000

#The reply time will be about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c 1 -s 1300 #frame should not pass

8.1.3.2.3 Qbv performance test

Use the setup described in the figure below for testing ENETC port0 (MAC0).

Figure 28. Setup for testing ENETC port0

cat > qbv5.txt << EOF
t0 11111111b 1000000
t1 00000000b 1000000

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 108 / 199

EOF

qbvset --device eno0 --entryfile qbv5.txt
./pktgen/pktgen_twoqueue.sh -i eno0 -q 3 -n 0

#The stream would get about half line rate

8.1.3.2.4 Using taprio Qdisc Setup Qbv

LS1028ardb support the tarprio qdisc to setup Qbv either. Below is an example Setup.

#Qbv test do not require the mqprio setting.
If mqprio is enabled, try to disable it by below command:
tc qdisc del dev eno0 root handle 1: mqprio

Enable the Qbv for ENETC eno0 port
Below command set eno0 with gate 0x01, means queue 0 open, the other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2
1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 01 300000 flags 0x2
Ping through eno0 port should be ok

Then close the gate queue 0. Open gate queue 1. The other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2
1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2
Ping through eno0 port should be dropped

#Disable the Qbv for ENETC eno0 port as below
tc qdisc del dev eno0 parent root handle 100 taprio

8.1.3.3 Qci test cases

Use the following as the background setting:

• Set eno0 MAC address

ip link set eno0 address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.

• Use the figure below as the hardware setup.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 109 / 199

Figure 29. Qci test case setup

8.1.3.3.1 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module which means streams without mac address and vid filter.
Such kind of filter setting always set larger index number stream filter entry. Those frames won't be fitlered then flow into this
stream filter entry.

Below example test no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream entry id 2. Then none
stream identifies frames would flow into the stream filter entry index 2 then pass the gate entry index 2, as shown in the following
example:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2

• Streams no streamhandle should pass this filter.

tsntool> qcisfiget --device eno0 --index 2

• Send a frame from the opposite device port (ping for example).

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2

tsntool> qcisgiset --device eno0 --index 2 --initgate 1

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 110 / 199

• Set Stream Gate entry 2, gate closes permanently.

tsntool> qcisgiset --device eno0 --index 2 --initgate 0

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2

#The result should look like below:
 match pass gate_drop sdu_pass sdu_drop red
 1 0 1 1 0 0

8.1.3.3.2 Testing null stream identify entry

Null stream identify in stream identify module means try to filter as destination mac address and vlan id.

Following steps shows stream identify entry index 1 set with filtering destination mac address is 10:00:80:00:00:00, vlan id
ignored(with or witout vland id). Then stream filter set on the entry index 1 with stream gate index entry id 1.

1. Set main stream by close gate.

2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.

tsntool> cbstreamidget --device eno0 --index 1

4. Set Stream filer entry 1 with stream gate entry id 1.

tsntool> qcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask you for editing gate list).

tsntool> qcisgiset --device eno0 --index 1 --initgate 0

6. Send one frame from the opposite device port should pass to the close gate entry id 1.

tsntool> qcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate_drop sdu_pass sdu_drop red
1 0 1 1 0 0

8.1.3.3.3 Testing source stream identify entry

Source stream identify means stream identify the frames by the source mac address and vlan id.

Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.

2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not with destination mac
address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac address)

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 111 / 199

3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid --sourcemac 0x112233445566 --
sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> qcisfiget --device eno0 --index 1

8.1.3.3.4 SGI stream gate list

Use the command below for this test:

cat > sgi1.txt << EOF
t0 0b -1 100000000 0
t1 1b -1 100000000 0
EOF
tsntool> qcisfiset --device eno0 --index 2 --gateid 2
tsntool> qcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgi1.txt

#flooding frame size 64bytes from opposite device port.(iperf or netperf as example)
tsntool> qcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open and 100ms close
periodically.

8.1.3.3.5 FMI test

Only send green color frames(Normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the eno0 port speed to
10000kbsp/s:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 5000

'cm' parameter set color mode enable means frames seperate green frames and yellow frames judged by the TCI bit in frame.
Or else, any frames are green frames.

'cf' parameter set the coupling flag enable. When CF is set to 0, the frames that are declared yellow is bounded by EIR. When
CF is set to 1, the frames that are declared Yellow is bounded by CIR + EIR depending on volume of the offered frames that are
declared Green.

After upper commands setup, since green frames not larger than EIR + CIR 10Mbit/s. So the green frame would not be dropped.

The below setting shows the dropped frames:

tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 2000

This case makes the grean frames pass 5Mbit/s in CIR, then it pass to the EIR space, but EIR is 2Mbit/s, so total EIR + CIR
7Mbit/s still not qualify the total 10Mbit/s bandwidth. So green frame would be dropped part.

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> qcifmiget --device eno0 --index 2
===
bytecount drop dr0_green dr1_green dr2_yellow remark_yellow dr3_red remark_red
1c89 0 4c 0 0 0 0 0
===
index = 2
cir = c34c

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 112 / 199

cbs = 5dc
eir = 4c4b3c
ebs = 5dc
couple flag
color mode

8.1.3.4 Qbu test

If you have two ls1028ardb boards, and link the two eno0 back to back, the test would not need to setup the switch and omit the
step 1,2,3, then just perform step 0,4,5.

If you have only one board, you can set the frame path from eno0 to switch by linking enetc ports MAC0 - SWP0. The setup
enable the switch SWP0 port merging capability, then enetc eno0 could show the preemption capability. Use the setup as shown
in the following figure for the Qbu test.

Figure 30. Qbu test

Before link the cable between ENETC port0 to SWP0, set up the switch up(refer the Switch configuration) and set IP for ENETC
port0. To make sure linking the ENETC port0 to SWP0, use the steps below:

0. Don't forget to enabling the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Make sure link speed is 1 Gbps by using the command:

ethtool eno0

2. If it is not 1Gbps, set it to 1 Gbps by using the command:

ethtool -s swp0 speed 1000 duplex full autoneg on

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 113 / 199

3. Set the switch to enable merge(or you can link to another merge capability port in another board):

devmem 0x1fc100048 32 0x111 #DEV_GMII:MM_CONFIG:ENABLE_CONFIG

4. ENETC port setting set and frame preemption test

ip link set eno0 address 90:e2:ba:ff:ff:ff
tsntool qbuset --device eno0 --preemptable 0xfe
./pktgen/pktgen_twoqueue.sh -i eno0 -q 0 -s 100 -n 20000 -m 90:e2:ba:ff:ff:ff

pktgen would fluding frames on TC0 and TC1.

5. Check the tx merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11f18

0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC_MERGE_MMFCTXR)

 NOTE

8.1.3.5 Qav test

8.1.3.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

Figure 31. Qav test setup

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 114 / 199

0. Don't forget to enabling the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

cbsset --device eno0 --tc 7 --percentage 60
cbsset --device eno0 --tc 6 --percentage 20

2. Check each queue bandwidth (pktgen require enabling NET_PKTGEN in kernel)

./pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 30000

wait seconds later to check result. It should get about 60% percentage line rate.

./pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n 30000

Wait seconds later to check result. It should get about 20% percentage line rate.

8.1.3.5.2 Using CBS Qdisc Setup Qav

LS1028a support the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100Mbit/s for queue 7 and
300Mbit/s for queue 6.

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
tc qdisc replace dev eno0 parent 1:8 cbs locredit -1470 hicredit 30 sendslope -900000 idleslope 100000
offload 1
tc qdisc replace dev eno0 parent 1:7 cbs locredit -1470 hicredit 30 sendslope -700000 idleslope 300000
offload 1
Try to flood stream here (require kernel enable NET_PKTGEN)
./pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 20000
./pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n 20000
tc qdisc del dev eno0 parent 1:7 cbs
tc qdisc del dev eno0 parent 1:8 cbs

8.1.4 Basic TSN configuration examples on the switch
The following sections describe examples for the basic configuration of TSN switch.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 115 / 199

8.1.4.1 Switch configuration

Figure 32. TSN switch configuration

Use the following commands for configuring the switch on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces: swp0 swp1 swp2 swp3 swp4 swp5>

ip link add name switch type bridge
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
ip link set swp4 master switch && ip link set swp4 up
ip link set swp5 master switch && ip link set swp5 up

8.1.4.2 Linuxptp test

To test 1588 synchronization on felix-switch interfaces, connect two boards back-to-back with switch interfaces. For example,
swp0 to swp0. The Linux booting log is displayed below:

…
pps pps0: new PPS source ptp1
…

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 116 / 199

Check PTP clock and timestamping capability

ethtool -T swp0
Time stamping parameters for swp0:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
 Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

For 802.1AS testing, use the configuration file gPTP.cfg in linuxptp source. Run the below commands on the two boards instead.

ptp4l -i swp0 -p /dev/ptp1 -f gPTP.cfg -m

8.1.4.3 Qbv test

The following figure describes the setup for Qbv test on LS1028ARDB.

Figure 33. Qbv test

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 117 / 199

8.1.4.3.1 Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > qbv0.txt
#Explaination:
'NUMBER' : t0
'GATE_VALUE' : 00000000b
'TIME_LONG' : 20000 ns

./tsntool
tsntool> verbose
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt

#Send one broadcast frame to swp0 from TestCenter.
ethtool -S swp1
#Should not get any frame from swp1 on TestCenter.

echo “t0 11111111b 20000” > qbv0.txt
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt

#Send one broadcast frame to swp0 on TestCenter.
ethtool -S swp1
#Should get one frame from swp1 on TestCenter.

Using taprio Qdisc Setup Qbv.

LS1028ardb support the tarprio qdisc to setup Qbv either. Below is an example Setup.

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300um.

tc qdisc replace dev swp1 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, we will capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and we couldn't capture the frame from swp1.

4. Disable the Qbv for swp1 port as below

tc qdisc del dev swp1 parent root handle 100 taprio

8.1.4.3.2 Basetime test

For the basetime test, first get the current second time:

#Get current time:
tsntool> ptptool -g -d /dev/ptp1

#add some seconds, for example you get 200.666 time clock, then set 260.666 as result
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt --basetime 260.666

#Send one broadcast frame to swp0 on the Test Center.
#Frame could not pass swp1 until time offset.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 118 / 199

8.1.4.3.3 Qbv performance test

Use the following commands for the QBv performance test:

cat > qbv5.txt << EOF
t0 11111111b 1000000
t1 00000000b 1000000
EOF
qbvset --device swp1 --entryfile qbv5.txt

#Send 1G rate stream to swp0 on TestCenter.

#The stream would get about half line rate from swp1.

8.1.4.4 Qbu test

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

Figure 34. Qbu test on switch

1. Set queue 1 to be preemptable.

tsntool> qbuset --device swp3 --preemptable 0x02

2. Send two streams from TestCenter, then check the number of additional mPackets transmitted by PMAC:

devmem 0x1fc010e48 32 0x3 && devmem 0x1fc010280

8.1.4.5 Qci test cases

The figure below illustrates the Qci test case setup.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 119 / 199

Figure 35. Qci test case

8.1.4.5.1 Stream identification

Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter.

2. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01, Vlan ID : 1

tsntool> cbstreamidset --device swp1 --nullstreamid --index 1 --nulldmac 0x000183fe1201 --
nullvid 1 --streamhandle 1

Explanation:

• device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by switch, switch
will not care device port.

• nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.

• nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid 68

Explanation:

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 120 / 199

• device: can be any one of switch ports.

• flowmeterid: PSFP Policer id, ranges from 63 to 383.

3. Send one frame, then check the frames.

ethtool -S swp1
ethtool -S swp2

Only swp1 can get the frame.

4. Use the following command to check and debug the stream identification status.

 qcisfiget --device swp0 --index 1

The parameter streamhandle is the same as index in stream filter set, we use streamhandle in
cbstreamidset to set a stream filter entry, and use index to disable it. Also, we use index in cbstreamidget
to get this stream filter entry.

 NOTE

8.1.4.5.2 Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile
sgi.txt --basetime 0x0

Explanation:

• 'device': can be any one of switch ports.

• 'index': gateid

• 'basetime' : It is the same as Qbv set.

2. Send one frame on TestCenter.

ethtool -S swp1

Note that the frame could pass, and green_prio_3 has increased.

3. Now run the following commands:

echo "t0 0b 3 50000 200" > sgi.txtx
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile
sgi.txt --basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swp1

Note that the frame could not pass.

8.1.4.5.3 SFI maxSDU test

Use the following command to run this test:

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid 68 --maxsdu 200

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 121 / 199

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swp1

You can observe that the frame could not pass.

8.1.4.5.4 FMI test

Use the following set of commands for the FMI test.

1. Run the command:

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000

• The 'device' in above command can be any one of the switch ports.

• The index of qcifmiset must be the same as flowmeterid of qcisfiset.

 NOTE

2. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swp0

Note that all frames pass and get all green frames.

3. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swp0

Observe that all frames pass and get green and yellow frames.

4. Send one stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get green, yellow, and red frames.

5. Map the CFI value of VLan to dp value on port 0 to recognize yellow frames.

tsntool> pcpmap --device swp0 --enable

6. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames.

7. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

8. Test cf mode.

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000 --cf

9. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 122 / 199

All frames pass and get all yellow frames (use CIR as well as EIR).

10. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

 NOTE

8.1.4.6 Qav test case

The below figure illustrates the Qav test case setup.

Figure 36. Qav test case

1. Set the percentage of two traffic classes:

tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 --percentage 40

2. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.

Stream rate must lager than bandwidth limited of queue.

 NOTE

3. Capture frames on swp2 on TestCenter.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 123 / 199

The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2), (PCP=2),…

Using CBS Qdisc Setup Qav

LS1028a support the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 20Mbit/s for queue 1 and
40Mbit/s for queue 2.

1. Set the cbs of two traffic classes:

tc qdisc add dev swp2 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
tc qdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
 sendslope -980000 idleslope 20000 offload 1
tc qdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
 sendslope -960000 idleslope 40000 offload 1

2. Send one stream with PCP=1 from TestCenter, we can get the stream bandwith is 20Mbps from swp2.

3. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.

4. delete the cbs rules.

tc qdisc del dev swp2 parent 1:2 cbs
tc qdisc del dev swp2 parent 1:3 cbs

8.1.4.7 Seamless redundancy test case

The following figure describes the test setup for the seamless redundancy test case.

Figure 37. Seamless redundancy test

8.1.4.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 124 / 199

On board A:

ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

On board B

 ip link add name switch type bridge vlan_filtering 1
 ip link set switch up
 ip link set swp0 master switch && ip link set swp0 up
 ip link set swp1 master switch && ip link set swp1 up
 ip link set swp2 master switch && ip link set swp2 up
 ip link set swp3 master switch && ip link set swp3 up
 bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

2. On board A, run the commands:

tsntool> cbstreamidset --device swp0 --nullstreamid --nulldmac 0x7EA88C9B41DD --nullvid 1 --
streamhandle 1
tsntool> cbgen --device swp0 --index 1 --iport_mask 0x08 --split_mask 0x07 --seq_len 16 --
seq_num 2048

In the command above,

• device: can be any one of switch ports.

• index: value is the same as streamhandle of cbstreamidset.

3. Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.

4. Capture frames on swp2 on TestCenter.

We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801, 23450802, 23450803…

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

8.1.4.7.2 Sequence Recover test

Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

tsntool> cbstreamidset --device swp2 --nullstreamid --nulldmac 0x7EA88C9B41DD --nullvid 1 --
streamhandle 1
tsntool> cbrec --device swp0 --index 1 --seq_len 16 --his_len 31 --rtag_pop_en

In the cbrec command mentioned above:

• device: can be any one of switch ports.

• index: value is the same as streamhandle of cbstreamidset.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 125 / 199

2. Send a frame from TestCenter to swp3 of board A, set dest mac to be 7E:A8:8C:9B:41:DD.

3. Capture frames from swp2 of board B on TestCenter, we can get only one frame without sequence tag.

8.1.4.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to different QoS class.
These are explained in the following sections.

8.1.4.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default QoS class is 0.

Set the PCP value on TestCenter.

Figure 38. Using PCP value of Vlan tag

8.1.4.8.2 Based on DSCP of ToS tag

Use the below steps to identify stream based on DSCP value of ToS tag.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 126 / 199

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swp0 --index 1 --cos 1 --dpl 0

Explanation:

• index: DSCP value of stream, 0-63.

• cos: QoS class which is mapped to.

• dpl: Drop level which is mapped to.

2. Set the DSCP value on TestCenter. DSCP value is the first six bits of ToS in IP header, set the DSCP value on TestCenter
as shown in the following figure.

Figure 39. Setting DSCP value on TestCenter

8.1.4.8.3 Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 127 / 199

1. Identify a stream.

tsntool> cbstreamidset --device swp1 --nullstreamid --nulldmac 0x000183fe1201 --nullvid 1 --
streamhandle 1
tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --flowmeterid 68

2. Set to Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --gatelistfile sgi.txt

8.1.4.9 ACL test

The access-control-list is using “tc flower” command to set the filter and actions. Following keys and actions are supported on
LS1028a:

keys:
vlan_id
vlan_prio
dst_mac/src_mac for non IP frames
dst_ip/src_ip
dst_port/src_port

actions:
trap
drop
police
vlan modify
vlan push(Egress)

Using following commands to set, get and delete ACL rules:

tc qdisc add dev swp0 ingress
tc filter add dev swp0 parent ffff: protocol [ip/802.1Q] flower skip_sw [keys] action [actions]
tc filter list dev swp0 parent ffff:
tc filter del dev swp0 parent ffff: pref [pref_id]

tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw [keys] action vlan push id [value] priority
[value]
tc filter show dev swp1 egress
tc filter del dev swp1 egress pref [pref_id]

There are four ACL use cases for testing:

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 128 / 199

Figure 40. ACL test

1. Drop all frames from source IP 192.168.2.1.

tc qdisc add dev swp0 ingress
tc filter add dev swp0 parent ffff: protocol ip flower skip_sw src_ip 192.168.2.1 action drop

Set source IP as 192.168.2.1 and send ip package from testcenter, package will be dropped on swp0.

2. Limit bandwidth of HTTP streams to 10Mbps.

tc filter add dev eth3 parent ffff: protocol ip flower skip_sw ip_proto tcp dst_port 80 action
police rate 10Mbit burst 10000

Send TCP package and set destination port as 80 on testcenter, set the stream bandwidth to 1Gbps, we can get a 10Mbps
stream rate.

3. Filter frames which have a specific vlan tag(VID=1 and PCP=1), then modify the vlan tag(VID=2, PCP=2) and classified
to Qos traffic class 2.

ip link set switch type bridge vlan_filtering 1
tc qdisc add dev swp0 ingress
tc filter add dev swp0 parent ffff: protocol 802.1Q flower skip_sw vlan_id 1 vlan_prio 1 action
vlan modify id 2 priority 2
bridge vlan add dev swp0 vid 2
bridge vlan add dev swp1 vid 2

Set vid=1 and pcp=1 in vlan tag, then send ip package from testcenter, we can get a package with vid=2, pcp=2 from swp1
on TestCenter.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 129 / 199

4. Push a specific vlan tag(vid=3, pcp=3) into frames(classified vid=2, pcp=2 in switch) egress from swp1.

tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw vlan_id 2 vlan_prio 2 action vlan
push id 3 priority 3

Set vid=1 and pcp=1 in vlan tag, then send ip package from testcenter, the frame will hit rule in usecase 3 and retag the
vlan(vid=2, pcp=2). we can get a frame with vid=3, pcp=3 from swp1 on TestCenter.

8.1.5 Netconf usage on LS1028ARDB
Netopeer is a set of NETCONF tools built on the libnetconf library. sysrepo-tsn (https://github.com/openil/sysrepo-tsn) helps to
configure TSN features, including Qbv, Qbu, Qci, and stream identification via network, without logging in to device.

For details of configuring TSN features on LS1028ARDB, please refer to NETCONF/YANG).

8.2 Using TSN features on LS1021A-TSN board
On the LS1021A-TSN platform, TSN features are provided by the SJA1105TEL Automotive Ethernet switch. These hardware
features comply to pre-standard (draft) versions of the following IEEE specifications:

• 802.1Qbv - Time Aware Shaping

• 802.1Qci - Per-Stream Filtering and Policing

• 1588v2 - Precision Time Protocol

The following demonstration illustrates the SJA1105 hardware features listed below:

• Ingress rate limiting via the L2 (best-effort) policers

• Time-aware shaping

• 802.1AS gPTP synchronization

8.2.1 Topology
For demonstrating the SJA1105 TSN features, the following topology is required:

• 1 LS1021A-TSN board, acting as a TSN switch

• 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as a sender of latency-
sensitive traffic

• 1 generic host (can be a PC or another board), acting as a sender of high-bandwidth traffic

• 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as receiver for the latency-
sensitive and for the high-bandwidth traffic

The required software packages for the generic hosts are:

• ptp4l, phc2sys and phc_ctl from the linuxptp package: https://github.com/openil/linuxptp

• iperf3

• isochron from the tsn-scripts package: https://github.com/vladimiroltean/tsn-scripts/tree/isochron

The generic hosts are assumed to be connected to the LS1021A-TSN board through an interface called eth0.

This topology is depicted in the following figure.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 130 / 199

https://github.com/openil/transAPI

Figure 41. Topology of the demo network

8.2.2 SJA1105 Linux support
The SJA1105 switch is supported in the OpenIL Linux kernel using the Distributed Switch Architecture (DSA) framework (an
overview of which can be found at https://netdevconf.info/2.1/papers/distributed-switch-architecture.pdf).

The following kernel configuration options are available for controlling its features:

• CONFIG_NET_DSA_SJA1105: enables base support for probing the SJA1105 ports as 4 standalone net devices capable
of sending and receiving traffic

• CONFIG_NET_DSA_SJA1105_PTP: enables additional support for the PTP Hardware Clock (PHC), visible in /dev/ptp1 on
the LS1021A-TSN board, and for PTP timestamping on the SJA1105 ports

• CONFIG_NET_DSA_SJA1105_TAS: enables additional support for the Time-Aware Scheduler (TAS), which is configured
via the tc-taprio qdisc offload

The documentation for this kernel driver is available at https://www.kernel.org/doc/html/latest/networking/dsa/sja1105.html.
Below is a listing of several driver features.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 131 / 199

The LS1021A-TSN device tree (arch/arm/boot/dts/ls1021a-tsn.dts) defines the sja1105 port names as swp2, swp3, swp4 and
swp5. The numbers have a direct correspondence with the chassis labels ETH2, ETH3, ETH4 and ETH5. The ETH2 chassis
label (represented in Linux by the swp2 net device) should not be confused with the eth2 net device, which represents the
LS1021A host port for this switch (called DSA master).

On the LS1021A-TSN board, network management is done by the systemd-networkd daemon, whose configuration files are
located in /etc/systemd/network/. On this board, the following configuration files for systemd-networkd are present by default:

• br0.netdev: Creates a bridge net device with VLAN filtering disabled, STP disabled and MVRP disabled

• br0.network: Configures the net devices enslaved to br0 to request an IPv4 address via DHCP

• eth0.network, eth1.network, swp.network: Configures all 6 ports of the LS1021A-TSN board to be part of the same br0 bridge
(4 ports are bridged in hardware, 2 ports are bridged in software)

• eth2.network: Configures the DSA master port to come up automatically, and assigns it a dummy link-local IP address. Having
the DSA master interface up is a requirement for using the switch net devices.

Although all ports are configured for L2 forwarding by default (and therefore the only IP address for this board should be assigned
to br0), this can be changed by removing the "Bridge=br0" line from the files in /etc/systemd/network/ and then running "systemctl
restart systemd-networkd".

In standalone mode, each SJA1105 port is able of acquiring an IP address and transferring general purpose packets to/from the
kernel. This is internally supported by the kernel driver by repurposing the VLAN tagging functionality for switch port separation
and identification. Therefore the ability to support general purpose traffic I/O only works as long as the user does not request
VLAN tagging, via the bridge vlan_filtering option. When this happens, the switch driver goes to a reduced functionality mode,
where the swpN net devices are no longer capable of sending and receiving general packets to/from the kernel. This is a hardware
limitation which can be somewhat mitigated by enabling the best_effort_vlan_filtering devlink parameter (by following the steps
in the kernel documentation).

Actually there is a second mechanism of frame tagging, which works for STP and PTP traffic and does not rely on VLAN tagging.
Therefore, the STP and PTP protocols remain operational on the sja1105 driver even when the ports are enslaved to a bridge
with vlan_filtering=1.

When VLAN awareness is disabled, the sja1105 ports perform no checks on VLAN port membership or PCP, and performs no
alteration to the VLAN tags. For these operations, the following command is necessary:

ip link set dev br0 type bridge vlan_filtering 1

Once VLAN filtering is enabled, the VLAN table of each switch port can be inspected and modified using the "bridge vlan"
commands from the iproute2 package.

The STP state machine can be started on the bridge using the following command:

ip link set dev br0 type bridge stp_state 1
ip link set dev br0 down
ip link set dev br0 up

The switch L2 address forwarding database (FDB) can be inspected and modified using the "bridge fdb" set of commands.

Port statistics counters can be inspected using the ethtool -S swpN command.

The sja1105 port MTU can be configured up to a maximum of 2021 using the following command:

ip link set dev swp2 mtu 2000

Port mirroring on a sja1105 port (mirroring of ingress and/or egress packets) can be configured via the following set of commands:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress matchall skip_sw \
 action mirred egress mirror dev swp3

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 132 / 199

tc filter show dev swp2 ingress
tc filter del dev swp2 ingress pref 49152

There are 3 types of policers currently supported by the sja1105 driver:

• Port policers: These affect all traffic that is incoming on a port, except traffic that hits a more specific rule (see below). These
are configured as follows:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress matchall skip_sw \
 action police rate 10mbit burst 64k

• Traffic class policers: These affect only traffic having a specific VLAN PCP. To limit traffic with VLAN PCP 0 (also includes
untagged traffic) to 100 Mbit/s on port swp2 only:

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
 vlan_prio 0 action police rate 100mbit burst 64k

• Broadcast policers: These affect only broadcast traffic (destination MAC ff:ff:ff:ff:ff:ff) received on an ingress port.

tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \
 action police rate 10mbit burst 64k

In absence of a specific policer allocated to a traffic class or to broadcast traffic, these packets will consume from the bandwidth
budget of the port policer.

It is also possible to combine the bandwidth allocation of a traffic class, or of broadcast traffic on multiple ports, and assign them
to a single policer. This functionality is called "shared filter blocks" and can be configured as follows (the example below limits
broadcast traffic coming from all switch ports to a total of 10 Mbit/s):

tc qdisc add dev swp2 ingress_block 1 clsact
tc qdisc add dev swp3 ingress_block 1 clsact
tc qdisc add dev swp4 ingress_block 1 clsact
tc qdisc add dev swp5 ingress_block 1 clsact
tc filter add block 1 flower skip_sw dst_mac ff:ff:ff:ff:ff:ff \
 action police rate 10mbit burst 64k

For PTP, the sja1105 driver implements the kernel primitives required for interoperating with the linuxptp and other open source
application stacks. OpenIL on the LS1021A-TSN is configured to start linuxptp by default in 802.1AS bridge mode on ports swp2,
swp3, swp4 and swp5. The following system components are involved:

• ptp4l: Daemon that implements the IEEE 1588/802.1AS state machines. Configured via the /etc/linuxptp.cfg file and controled
via the linuxptp.service systemctl service.

• phc2sys: Daemon that synchronizes the system time (CLOCK_REALTIME) to the active PHC (/dev/ptp1) or viceversa,
depending on the board role in the network (PTP master or slave). Configured via the /etc/linuxptp-system-clock.cfg file and
controled via the phc2sys.service systemctl service.

To inspect the PTP synchronization status of the board, the following commands can be used:

systemctl start --now ptp4l
systemctl start --now phc2sys
journalctl -b -u ptp4l -f
journalctl -b -u phc2sys -f

Under steady state, the switch ports are expected to maintain a synchronization offset of +/- 100 ns offset to the PTP master.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 133 / 199

During normal operation, the static configuration of the sja1105 needs to be changed by the driver. In turn, this requires a switch
reset, which temporarily disrupts Ethernet traffic and PTP synchronization. After a switch reset, the PTP synchronization offset
may jump to a higher momentary range of +/- 2 500 000 ns. The list of reset reasons in the sja1105 kernel driver is:

• Enabling or disabling VLAN filtering, via the "ip link" command.

• Enabling or disabling PTP timestamping.

• Configuring the ageing time (which is done automatically by the kernel STP state machine when STP is active).

• Configuring the Time-Aware Scheduler via the tc-taprio command.

• Configuring the L2 policers (for MTU or for policing).

8.2.3 Synchronized 802.1Qbv demo
The objectives of this demonstration are the following:

• Synchronize the SJA1105 PTP clock using IEEE 802.1AS.

• Run the SJA1105 Time-Aware Scheduler (802.1Qbv engine) based on the PTP clock.

• Create a small switched TSN network with a flow requiring deterministic latency. Prove the latency is not affected by interfering
traffic.

In the topology described earlier in this chapter, the boards which need to be synchronized by PTP are hosts 1, 2 and the LS1021A-
TSN board. Host 3 only generates iperf traffic, which is not time-sensitive.

The following commands are required to start PTP synchronization using the 802.1AS profile on host 1 and 2:

ptp4l -i eth0 -f /etc/ptp4l_cfg/gPTP.cfg -m
phc2sys -a -rr --transportSpecific 0x1 --step_threshold 0.0002 --first_step_threshold 0.0002

Different output is expected on the two hosts. One will become PTP grandmaster and show the following logs:

• ptp4l:

Apr 07 17:20:24 OpenIL ptp4l[3267]: [13.067] port 1: link up
Apr 07 17:20:24 OpenIL ptp4l[3267]: [13.104] port 1: FAULTY to LISTENING on INIT_COMPLETE
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.113] port 1: LISTENING to MASTER on
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.113] selected local clock 00049f.fffe.05de06 as best master
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.113] port 1: assuming the grand master role
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.692] port 1: new foreign master 001f7b.fffe.630248-1
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.692] selected best master clock 00049f.fffe.05f627
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.692] port 1: assuming the grand master role

• phc2sys:

Apr 07 17:21:24 OpenIL phc2sys[3268]: [73.382] eno0 sys offset 12 s2 freq +2009 delay 1560
Apr 07 17:21:25 OpenIL phc2sys[3268]: [74.382] eno0 sys offset 2 s2 freq +2003 delay 1560
Apr 07 17:21:26 OpenIL phc2sys[3268]: [75.382] eno0 sys offset -18 s2 freq +1983 delay 1600
Apr 07 17:21:27 OpenIL phc2sys[3268]: [76.383] eno0 sys offset 27 s2 freq +2023 delay 1600
Apr 07 17:21:28 OpenIL phc2sys[3268]: [77.383] eno0 sys offset 7 s2 freq +2011 delay 1600
Apr 07 17:21:29 OpenIL phc2sys[3268]: [78.383] eno0 sys offset -18 s2 freq +1988 delay 1560
Apr 07 17:21:30 OpenIL phc2sys[3268]: [79.383] eno0 sys offset -8 s2 freq +1993 delay 1560

While the other board will become a PTP slave, as seen by the following logs:

• ptp4l:

Apr 07 17:23:14 OpenIL ptp4l[3778]: [68484.668] rms 17 max 36 freq +1613 +/- 15 delay 737
+/- 0
Apr 07 17:23:15 OpenIL ptp4l[3778]: [68485.668] rms 8 max 15 freq +1622 +/- 11 delay 737

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 134 / 199

+/- 0
Apr 07 17:23:16 OpenIL ptp4l[3778]: [68486.669] rms 14 max 28 freq +1643 +/- 13 delay 737
+/- 0
Apr 07 17:23:17 OpenIL ptp4l[3778]: [68487.670] rms 11 max 17 freq +1650 +/- 10 delay 738
+/- 0
Apr 07 17:23:18 OpenIL ptp4l[3778]: [68488.671] rms 11 max 20 freq +1633 +/- 15 delay 738
+/- 0
Apr 07 17:23:19 OpenIL ptp4l[3778]: [68489.672] rms 8 max 16 freq +1640 +/- 11 delay 737
+/- 0
Apr 07 17:23:20 OpenIL ptp4l[3778]: [68490.673] rms 16 max 32 freq +1640 +/- 23 delay 737
+/- 0
Apr 07 17:23:21 OpenIL ptp4l[3778]: [68491.674] rms 12 max 21 freq +1622 +/- 13 delay 737
+/- 0
Apr 07 17:23:22 OpenIL ptp4l[3778]: [68492.675] rms 13 max 19 freq +1648 +/- 13 delay 738
+/- 0
Apr 07 17:23:23 OpenIL ptp4l[3778]: [68493.676] rms 18 max 34 freq +1668 +/- 15 delay 737
+/- 0

• phc2sys:

Apr 07 17:23:38 OpenIL phc2sys[3774]: [68508.790] CLOCK_REALTIME phc offset 10 s2 freq
-342 delay 1600
Apr 07 17:23:39 OpenIL phc2sys[3774]: [68509.791] CLOCK_REALTIME phc offset 2 s2 freq
-347 delay 1560
Apr 07 17:23:40 OpenIL phc2sys[3774]: [68510.791] CLOCK_REALTIME phc offset 9 s2 freq
-339 delay 1600
Apr 07 17:23:41 OpenIL phc2sys[3774]: [68511.791] CLOCK_REALTIME phc offset -22 s2 freq
-368 delay 1560
Apr 07 17:23:42 OpenIL phc2sys[3774]: [68512.791] CLOCK_REALTIME phc offset -19 s2 freq
-371 delay 1560
Apr 07 17:23:43 OpenIL phc2sys[3774]: [68513.791] CLOCK_REALTIME phc offset -13 s2 freq
-371 delay 1560
Apr 07 17:23:44 OpenIL phc2sys[3774]: [68514.791] CLOCK_REALTIME phc offset 48 s2 freq
-314 delay 1560
Apr 07 17:23:45 OpenIL phc2sys[3774]: [68515.792] CLOCK_REALTIME phc offset 22 s2 freq
-325 delay 1560
Apr 07 17:23:46 OpenIL phc2sys[3774]: [68516.792] CLOCK_REALTIME phc offset 17 s2 freq
-324 delay 1560
Apr 07 17:23:47 OpenIL phc2sys[3774]: [68517.792] CLOCK_REALTIME phc offset -29 s2 freq
-365 delay 1560

The role of the LS1021A-TSN board is to relay the PTP time from the 802.1AS grandmaster to the slave. It acts as a slave on
the port connected to the GM and as a master on the port connected to the other host.

[root@OpenIL ~] # journalctl -b -u ptp4l -f
-- Logs begin at Tue 2020-04-07 14:02:11 UTC. --
Apr 07 17:24:34 OpenIL ptp4l[291]: [86640.528] rms 10 max 23 freq -19731 +/- 11 delay 737 +/- 0
Apr 07 17:24:35 OpenIL ptp4l[291]: [86641.528] rms 9 max 15 freq -19740 +/- 13 delay 736 +/- 0
Apr 07 17:24:36 OpenIL ptp4l[291]: [86642.529] rms 12 max 19 freq -19757 +/- 10 delay 737 +/- 0
Apr 07 17:24:37 OpenIL ptp4l[291]: [86643.530] rms 9 max 14 freq -19747 +/- 13 delay 737 +/- 0
Apr 07 17:24:38 OpenIL ptp4l[291]: [86644.530] rms 13 max 22 freq -19733 +/- 15 delay 736 +/- 0
Apr 07 17:24:39 OpenIL ptp4l[291]: [86645.531] rms 7 max 14 freq -19735 +/- 9 delay 737 +/- 0
Apr 07 17:24:40 OpenIL ptp4l[291]: [86646.532] rms 7 max 13 freq -19735 +/- 9 delay 737 +/- 0
Apr 07 17:24:41 OpenIL ptp4l[291]: [86647.532] rms 11 max 19 freq -19750 +/- 12 delay 737 +/- 0
Apr 07 17:24:42 OpenIL ptp4l[291]: [86648.533] rms 6 max 14 freq -19745 +/- 8 delay 737 +/- 0
Apr 07 17:24:43 OpenIL ptp4l[291]: [86649.534] rms 9 max 15 freq -19750 +/- 12 delay 736
+/- 0

The above information can be interpreted as follows (only the last line is interpreted here):

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 135 / 199

• Because the default (implicit) summary_interval in /etc/linuxptp.cfg is 0 (print stats once per second) and the logSyncInterval
required by 802.1AS is -3 (the sync messages are sent at an interval of 1/8 seconds - 125 ms), this means that synchronization
stats cannot be printed in full (for each packet) and are printed in an abbreviated form (there is no "offset" in the logs).

• The offset to the master has a root mean square value of 9 ms, with a maximum of 15 ns in the past 1 second.

• The frequency correction required to synchronize to the GM was on average -19750 parts per billion (ppb). If the frequency
adjustment exceeds a certail sanity threshold (depending on kernel driver), ptp4l may print "clockcheck" warnings and stop
synchronization. This can be sometimes remedied manually by running the following command to reset the PTP clock
frequency adjustment to zero:

phc_ctl /dev/ptp0 freq 0

• The measured path delay (MAC to MAC propagation delay for ~70 bytes frames at 1Gbps) between its device and its link
partner is exactly 736 ns.

The clock distribution tree in this network is as follows: the system clock of the PTP GM (e.g. Host 1) disciplines its PTP hardware
clock (/dev/ptp0), using phc2sys. Over Ethernet, the PTP GM disciplines the SJA1105 PHC, which disciplines the PTP slave (e.g.
Host 2). On the slave host, the phc2sys process runs in the reverse direction, disciplining the system clock (CLOCK_REALTIME)
to the PTP hardware clock (/dev/ptp0).

A note on using the LS1021A-TSN board as a gPTP GM for this scenario (in place of Host 1). On this board there is no battery-
backed RTC, so there is no persistent source of time onboard. One has to rely on the NTP service (ntpd.service) to provide time,
otherwise a time in 1970 will be relayed into the PTP network.

A note on using phc2sys on the slave host. Since phc2sys attempts to discipline CLOCK_REALTIME, one must manually ensure
that other daemons in the system do not attempt to do the same thing, such as ntpd. Otherwise there will be access conflicts
between phc2sys and the other daemon, and phc2sys will keep printing clockcheck warning messages.

Install the following schedule into the sja1105 port egressing towards Host 2:

tc qdisc add dev swp2 parent root taprio \
 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 0 \
 sched-entry S 80 50000 \
 sched-entry S 40 50000 \
 sched-entry S 3f 300000 \
 flags 2

The base-time of 0 indicates the phase offset of the network schedule. This time corresponds to Jan 1st 1970, but it is automatically
advanced into an equivalent time into the immediate PTP future (it is advanced by an integer number of cycle-time nanoseconds).

The cycle-time in this example is not provided explicitly, but it is calculated as the sum of the durations of all gate events: 400
microseconds (us).

The schedule at the egress of swp2 is divided as follows:

• 50 us for PTP traffic (S 80). The traffic class assignment of 7 for link-local management traffic (STP, PTP, etc) is fixed to 7
at driver level and is not user configurable at this time.

• 50 us for traffic class 6 (S 40). The latency-sensitive traffic generator will be injecting into this window.

• 300 us for all other traffic classes 0-5 (S 3f).

Enabling QoS classification on the sja1105 switch based on VLAN PCP is done by running:

ip link set dev br0 type bridge vlan_filtering 1

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 136 / 199

First the receiver for latency-sensitive traffic needs to be started on Host 2. This process waits for connections from the sender
and then transmits its statistics to it.

ip addr add 192.168.1.2/24 dev eth0
isochron rcv --interface eth0 --quiet

The sender is started on Host 1 as follows:

ip addr add 192.168.1.1/24 dev eth0
isochron send --interface eth0 --dmac 00:04:9f:05:de:06 --priority 6 --vid 0 \
 --base-time 0 --cycle-time 400000 --shift-time 50000 --advance-time 90000 \
 --num-frames 10000 --frame-size 64 --client 192.168.1.2 --quiet

The log should look as follows:

Base time 0.000040000 is in the past, winding it into the future
 Now: 1586282691.751150218
 Base time: 1586282691.751160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 4329 max 4444 mean 4387.987 stddev 24.508
HW TX deadline delta: min -65238 max -18938 mean -59707.395 stddev 1371.995
SW TX deadline delta: min -33528 max 25058 mean -28221.001 stddev 1844.235
HW RX deadline delta: min -60874 max -14529 mean -55319.408 stddev 1372.222
SW RX deadline delta: min -43398 max 130659 mean -38212.966 stddev 2514.592
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 1 (0.010%)

The following clarifications are necessary:

• The destination MAC is that of Host 2's interface eth0

• The sent packets have a VLAN tag with VID 0 and PCP 6. Because they are priority-tagged (802.1p) the sja1105 switch
ports will accept these packets without any "bridge vlan add vid 0 dev swp3" command.

• The isochron program sends a number of 10000 frames, at an interval of 400 us. The base-time is the same as on the sja1105
egress port swp2, but it is shifted with 50 us to the right, in order to align with the beginning of traffic class 6's window (which
is the second timeslot in the schedule). The packet transmission deadlines are therefore at (base-time + shift-time + N *
cycle-time).

• Packets must in fact be transmitted earlier than the TX deadline, in order to compensate for scheduling latencies in the Linux
kernel and the actual propagation delay of the packet. So the isochron program sleeps until 90 us in advance of the next
deadline.

• By "winding the base time into the future", one understands the process by which the original base time (0) is incremented
by the smallest number N of cycles such that it becomes greated than the current PTP time (1586282691.751150218). In
this case, the new base-time is 1586282691.751160000.

• For each packet, the sender collects 2 TX timestamps: one hardware and one software. The receiver also collects two
timestamps. These timestamps are not printed to the console because the --quiet option was specified.

• Correlation between timestamps at the sender and at the receiver is done through a secondary socket. The receiver waits
for connections on TCP port 5000, and transmits its log to the sender, which correlates with its own log by using a key formed
out of {sequence number, scheduled TX time (deadline)}. Both these values are embedded into the packet payload. If the --
client option is omitted, the statistics correlation is not performed. This TCP socket is the only reason for which IP
communication is necessary in this network.

• The path delay is calculated as the delta between the RX hardware timestamp at the receiver and the TX hardware timestamp
at the sender.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 137 / 199

• Each "deadline delta" is calculated as the difference between the timestamp and the scheduled TX time of this packet. The
HW TX deadline delta should always be negative, as that indicates the packets were sent before the scheduled TX time has
expired. The SW TX timestamps are taken after the HW TX timestamps in this case, so their meaning is less relevant for
this driver. The RX deadline deltas will become relevant once the 802.1Qbv schedule is installed on the sja1105 switch port.

The above log was taken with no 802.1Qbv schedule active on the sja1105 port and no background traffic. After starting
background traffic:

Host 2
iperf3 -s > /dev/null &
sysctl -w kernel.sched_rt_runtime_us=-1
chrt --fifo 90 isochron rcv -i eth0 --quiet
Host 3
ip addr add 192.168.1.3/24 dev eth0
iperf3 -c 192.168.1.2 -t 48600
Connecting to host 10.0.0.112, port 5201
[5] local 10.0.0.113 port 60360 connected to 10.0.0.112 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 105 MBytes 878 Mbits/sec 0 489 KBytes
[5] 1.00-2.00 sec 102 MBytes 859 Mbits/sec 0 513 KBytes
[5] 2.00-3.00 sec 102 MBytes 858 Mbits/sec 0 513 KBytes
[5] 3.00-4.00 sec 101 MBytes 851 Mbits/sec 0 513 KBytes
[5] 4.00-5.00 sec 102 MBytes 860 Mbits/sec 0 539 KBytes

a re-run of the isochron traffic generated by Host 1 looks as follows:

chrt --fifo 90 isochron send -i eno0 -d 00:04:9f:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000 -
n 10000 -s 64 -C 10.0.0.112 -q
Base time 0.000040000 is in the past, winding it into the future
 Now: 1586286409.635121693
 Base time: 1586286409.635160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 4314 max 16774 mean 9725.688 stddev 3919.150
HW TX deadline delta: min -64273 max -8538 mean -59894.931 stddev 1467.284
SW TX deadline delta: min -33286 max 37575 mean -28498.114 stddev 2006.546
HW RX deadline delta: min -58924 max -904 mean -50169.243 stddev 4183.042
SW RX deadline delta: min -52757 max 1109472 mean -29436.032 stddev 23537.847
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 4 (0.040%)

It can be seen that the path delay variance has increased due to the prolonged wait of packets until MTU-sized packets generated
by iperf3 have finished transmission.

Finally, installing the 802.1Qbv schedule on the switch has effects upon all statistics calculated by isochron:

chrt --fifo 90 isochron send -i eno0 -d 00:04:9f:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000 -
n 10000 -s 64 -C 10.0.0.112 -q
Base time 0.000040000 is in the past, winding it into the future
 Now: 1586286689.223100936
 Base time: 1586286689.223160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 14199 max 65684 mean 61357.368 stddev 1494.831
HW TX deadline delta: min -64128 max -12643 mean -59822.445 stddev 1494.557
SW TX deadline delta: min -33616 max 25621 mean -28448.709 stddev 1974.185
HW RX deadline delta: min 1476 max 2041 mean 1534.924 stddev 24.822
SW RX deadline delta: min 5243 max 1122800 mean 21040.814 stddev 16752.155

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 138 / 199

HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 5 (0.050%)

The path delay has increased, but that is because now it contains the time spent by the packets blocked on the switch waiting
for gate 6 to open.

The HW RX deadline delta now has a new meaning, since in the last example (with 802.1Qbv enabled on the switch), the gate
acts as a barrier and eliminates the jitter in HW TX timestamps, which is induced by scheduling latencies in the sender's operating
system. Generally speaking, the jitter of the sender is eliminated by the first switch upon packet admission into the TSN network.
The effect is that the receiver sees a packet stream with low jitter.

The path delay can be reduced by decreasing the advance time. It is configured in such a way that the packets arrive on the
switch prior to the gate opening, which depends on the jitter of the sender. Minimizing the TX jitter is outside the scope of this
demonstration.

8.2.4 NETCONF usage
YANG models for the SJA1105 ports using the DSA driver are not supported as of this release.

For YANG models supporting the sja1105-tool, please check the documentation from previous OpenIL releases.

NXP Semiconductors
TSN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 139 / 199

Chapter 9
4G-LTE Modem

9.1 Introduction
4G-LTE USB modem functionality is supported on NXP's LS1021-IoT, LS1012ARDB, LS1043ARDB, LS1046ARDB, and
LS1028ARDB platforms.

9.2 Hardware preparation
A HuaWei E3372 USB Modem (as example) is used for the 4G-LTE network verification.

Insert this USB modem into USB slot of LS1012ARDB board (LS1012ARDB as example).

9.3 Software preparation
In order to support 4G-LTE modem, some options are needed.

1. In OpenIL environment, use command “make menuconfig” to enable the below options:

$make menuconfig
System configuration --->
 <*> /dev management (Dynamic using devtmpfs + eudev)

Target packages --->
 Hardware handling --->
 <*> usb_modeswitch
<*> usb_modeswitch_data

2. In Linux kernel environment, make sure the below options are enabled:

$make linux-menuconfig
Device Drivers --->
 [*] Network device support --->
 <*> USB Network Adapters --->
 <*> Multi-purpose USB Networking Framework
 <*> CDC Ethernet support
 <*> CDC EEM support
 <*> CDC NCM support

Finally, update the images, refer to Updating target images for LS1012ARDB.

9.4 Testing 4G USB modem link to the internet
Perform the following instructions to set up the 4G Modem .

After booting up the Linux kernel, an Ethernet interface will be identified, for example “eth2”.

1. Set eth2 connected to the network.

$ udhcpc -BFs -i eth2

2. Test the 4G modem link to the internet.

$ ping www.nxp.com
PING www.nxp.com (210.192.117.231): 56 data bytes
64 bytes from 210.192.117.231: seq=0 ttl=52 time=60.223 ms

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 140 / 199

64 bytes from 210.192.117.231: seq=1 ttl=52 time=95.076 ms
64 bytes from 210.192.117.231: seq=2 ttl=52 time=89.827 ms
64 bytes from 210.192.117.231: seq=3 ttl=52 time=84.694 ms
64 bytes from 210.192.117.231: seq=4 ttl=52 time=68.566 ms

NXP Semiconductors
4G-LTE Modem

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 141 / 199

Chapter 10
OTA implementation
NXP's LS1021-IoT, LS1012ARDB, LS1043ARDB, LS1046ARDB, and LS1028ARDB platforms support OTA (Over-the-air)
requirements. This section provides an introduction to OTA use cases, scripts, configuration settings for implementation and
server preparation, and a test case. It also lists the OTA features supported by each hardware platform.

Notice: OTA is not enabled in OpenIL v1.8 release.

10.1 Introduction
OTA refers to a method of updating U-Boot, kernel, file system, and even the full firmware to devices through the network. If the
updated firmware does not work, the device can rollback the firmware to the latest version automatically.

While updating U-Boot, there is no hardware method to rollback the device automatically, hence the device might
not be rolled back, once the U-Boot is not working.

 NOTE

• version.json: This is a JSON file which saves the board name and version of each firmware. Below is an example of
version.json.

{
"updatePart":"kernel", /* Name of firmware image which has been updated. */
"updateVersion":"1.0", /* Version of firmware image which has been updated. */
"all":"1.0", /* version of the full firmware image which has been used now */
"u-boot":"1.0", /* version of the u-boot image which has been used now */
"kernel":"1.0", /* version of the kernel image which has been used now */
"filesystem":"1.0", /* version of the filesystem image which has been used now */
"boardname":"ls1021aiot" /* used to get the corresponding firmware from server*/
"URL":"https://www.nxp.com/lgfiles/iiot" /* used to get the corresponding firmware from server*/
}

• update.json: This file is stored in server, it saves the name and version of firmware image which will be updated. Below is
a sample update.json file:

{
"updateStatus":"yes", /* set yes or no to tell devices is it need to update. */
"updatePart":"kernel", /* name of update firmware. */
"updateVersion":"1.0", /* version of update firmware */
}

• ota-update: This script can get a JSON file named update.json from server, then parse the file and get the new firmware
version to confirm whether to download it from server or not. It finally writes the firmware into the SD card instead of the
old one. After that, save the "updatePart" and "updateVersion" into version.json, and mark the update status on 4080
block of SD card to let U-Boot know it.

• ota-versioncheck: This script checks if the firmware has been updated, then updates the version of the update part in
version.json, and cleans the flag of update status on 4080 block of SD card. This script runs automatically each time the
system restarts.

• ota-rollback: This script runs on the ramdisk filesystem after the filesystem update fails. It gets the old firmware version
from the version.json file and then updates it from the server.

10.2 Platform support for OTA demo
The OTA demo is supported by four NXP hardware platforms. Following is the list of features supported by each platform:

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 142 / 199

1. LS1021A-IoT

• Full SD card firmware update

• U-Boot image update kernel image update

• File system image update

• Full SD card firmware update

2. LS1012ARDB

• Full SD card firmware update

• RCW and U-Boot image update on QSPI flash

• Kernel image update and rollback

• File system image update and rollback

3. LS1043ARDB

• Full SD card firmware update

• U-Boot image update

• Kernel image update and rollback

• File system image update and rollback

4. LS1046ARDB

• Full SD card firmware update

• U-Boot image update

• Kernel image update and rollback

• File system image update and rollback

10.3 Server requirements
This demo provides a sample server to update images for the v1.0 release. In case you want to use another server, you need to
change the URL to your own server path at “target/linux/layerscape/image/backup/version.json” such as the
following:

"URL":"https://www.nxp.com/lgfiles/iiot/"

The server must include a JSON file named update.json that can send information to device boards. Below is a sample
update.json file.

{
 /* set yes or no to tell devices is it need to update. */
 "updateStatus":"yes",

 /* which part to update, you can write "all", "u-boot", “kernel”, "filesystem" */
 "updatePart":"filesystem",

 /* version of update firmware */
 "updateVersion":"1.0",
}

Images for OTA are stored in the path:

<updateVersion>/<boardname>/
where the <boardname> can be one of these: ls1021aiot, ls1012ardb-64b, ls1012ardb-32b, ls1043ardb-64b,
ls1043ardb-32b, ls1046ardb-64b, or ls1046ardb-32b.

NXP Semiconductors
OTA implementation

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 143 / 199

Images must be named as following:

• u-boot.bin: U-Boot image for update. In ls1012ardb folder, this image includes RCW and U-Boot.

• uImage: kernel image for update

• rootfs.ext4: filesystem image for update

• firmware_sdcard.bin: a full firmware of SD card image.

10.4 OTA test case
1. Plug network cable into Eth1 on the board. This enables the network after the system is running.

2. Update U-Boot using the following steps:

• Update the .json on server as shown in the following example:

 {
 "updateStatus":"yes",
 "updatePart":"u-boot",
 "updateVersion":"1.0",
}

• Upload the u-boot image on server path: 1.0/<boardname>/u-boot.bin

• Run ota-update command on device board.

3. Updating the file system:

• Set the "updatePart" to "filesystem" in update.json.

• Upload the filesystem image on server path: 1.0/<boardname>/rootfs.ext4

• Run ota-update command on the device board.

4. Updating full firmware

• Set the "updatePart" to "all" in update.json.

• Upload the full firmware image on server path: 1.0/<boardname>/firmware_sdcard.bin

• Run ota-update command on device board.

5. Rollback test:

• The Kernel and file system can use a wrong image to upload on the server and test update on device.

NXP Semiconductors
OTA implementation

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 144 / 199

Chapter 11
EtherCAT
OpenIL supports the use of EtherCAT ((Ethernet for Control Automation Technology) and integrates the IGH EtherCAT master
stack. EtherCAT support is verified on NXP’s LS1021-IoT, LS1043ARDB, LS1046ARDB, and LS1028ARDB platforms.

11.1 Introduction
EtherCAT is an Ethernet-based fieldbus system, invented by BECKHOFF Automation. The protocol is standardized in IEC
61158 and is suitable for both hard and soft real-time computing requirements in automation technology. The goal during
development of EtherCAT was to apply Ethernet for automation applications requiring short data update times (also called cycle
times; ≤ 100 µs) with low communication jitter (for precise synchronization purposes; ≤ 1 µs) and reduced hardware costs.

• EtherCAT is Fast: 1000 dig. I/O: 30 µs, 100 slaves: 100 µs.

• EtherCAT is Ethernet: Standard Ethernet at I/O level.

• EtherCAT is Flexible: Star, line, drop, with or without switch.

• EtherCAT is Inexpensive: ethernet is mainstream technology, therefore inexpensive.

• EtherCAT is Easy: everybody knows Ethernet, it is simple to use.

At present, the EtherCAT master supports the common open source code for SOEM of RT - LAB development (Simple Open
Source EtherCAT Master) and EtherLab, the IGH EtherCAT master. To use SOEM is simpler than to use the IGH EtherCAT
Master, but IGH for the realization of the EtherCAT is more complete. For example, IGH supports more NIC. For more
information, see https://rt-labs.com/ethercat/ and http://www.etherlab.org. The integration in OpenIL is IGH EtherCAT master.

11.2 IGH EtherCAT architecture
The components of the master environment are described below:

• Master module: This is the kernel module containing one or more EtherCAT master instances, the ‘Device Interface’ and
the ‘Application Interface’.

• Device modules: These are EtherCAT-capable Ethernet device driver modules that offer their devices to the EtherCAT
master via the device interface. These modified network drivers can handle network devices used for EtherCAT operation
and ‘normal’ Ethernet devices in parallel. A master can accept a certain device and then, is able to send and receive
EtherCAT frames. Ethernet devices declined by the master module are connected to the kernel's network stack, as usual.

• Application: A program that uses the EtherCAT master (usually for cyclic exchange of process data with EtherCAT
slaves). These programs are not part of the EtherCAT master code, but need to be generated or written by the user. An
application can request a master through the application interface. If this succeeds, it has the control over the master: It
can provide a bus configuration and exchange process data. Applications can be kernel modules (that use the kernel
application interface directly) or user space programs, that use the application interface via the EtherCAT library, or the
RTDM library.

The following figure shows that IGH EtherCAT master architecture.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 145 / 199

https://rt-labs.com/ethercat/
http://www.etherlab.org

Figure 42. IGH EtherCAT master architecture

11.3 EtherCAT protocol
Following are the characteristics of the EtherCAT protocol:

• The EtherCAT protocol is optimized for process data and is transported directly within the standard IEEE 802.3 Ethernet
frame using Ethertype 0x88a4.

• The data sequence is independent of the physical order of the nodes in the network; addressing can be in any order.

• Broadcast, multicast, and communication between slaves is possible, but must be initiated by the master device.

• If IP routing is required, the EtherCAT protocol can be inserted into UDP/IP datagrams. This also enables any control with
Ethernet protocol stack to address EtherCAT systems.

• It does not support shortened frames.

The following figure shows the EtherCAT frame structure.

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 146 / 199

Figure 43. EtherCAT frame structure

11.4 EtherCAT system integration and example
This section describes how to integrate EtherCAT with the OpenIL system and provides an example of running the BECKHOFF
application.

11.4.1 Building kernel images for EtherCAT
For LS1021A-IoT, EtherCAT supports the following configuration files:

• nxp_ls1021aiot_baremetal_defconfig

• nxp_ls1021aiot_baremetal_ubuntu_defconfig

• nxp_ls1021aiot_defconfig

• nxp_ls1021aiot_optee_defconfig

• nxp_ls1021aiot_optee_ubuntu_defconfig

• nxp_ls1021aiot_ubuntu_defconfig.

For LS1043ARDB, EtherCAT supports the following configurations:

• nxp_ls1043ardb-64b_defconfig

• nxp_ls1043ardb-64b_ubuntu_defconfig

• nxp_ls1043ardb_baremetal-64b_defconfig.

For LS1046ARDB, EtherCAT supports the following configurations:

• nxp_ls1046ardb-64b_defconfig

• nxp_ls1046ardb-64b_qspi_defconfig

• nxp_ls1046ardb-64b_qspi-sb_defconfig

• nxp_ls1046ardb-64b_ubuntu_defconfig

• nxp_ls1046ardb_baremetal-64b_defconfig.

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 147 / 199

Use the command below to build image supporting EtherCAT (example: nxp_ls1046ardb-64b_defconfig):

$ make nxp_ls1046ardb-64b_defconfig
$ make

Then, flash the image to SD card and reboot the board with this card and SD boot.

11.4.2 Command-line tool
Each master instance gets a character device as a userspace interface. The devices are named /dev/EtherCATx, where x is
the index of the master.

Device node creation The character device nodes are automatically created, if the startup script is executed. The following
example illustrates the command-line tools:

Table 44. Command line tools for EtherCAT

Command Description Arguments Output

ethercat config
[OPTIONS]

Shows slave
configurations.

Options:

• --alias -a <alias >
Configuration alias (see
above)

• --position -p <pos >
Relative position (see
above).

• -- verbose -v Show
detailed configurations.

Without the -- verbose option, slave
configurations are output one -per - line. For
example, the output for1001:0 0
x0000003b /0 x02010000 3 would be
displayed as follows:

• 1001:0 -> Alias address and relative
position (both decimal).

• 0 x0000003b /0 x02010000 -> Expected
vendor ID and product code (both
hexadecimal).

• 3 -> Absolute decimal ring position of the
attached slave, or '-' if none attached.

• OP -> Application – layer state of the
attached slave, or '-', if no slave is
attached.

ethercat master
[OPTIONS]

Shows master and
Ethernet device
information.

Options:

-- master -m <indices >
Master indices. A comma -
separated

list with ranges is supported.

Example: 1 ,4 ,5 ,7 -9.
Default: - (all).

Master0
Phase: Idle
 Active: no
 Slaves: 8
 Ethernet devices:
 Main:
00:00:08:44: ab :66 (attached)
 Link: UP
 Tx frames:
18846
 Tx bytes:
1169192
 Rx frames:
18845
 Rx bytes:
1169132
 Tx errors: 0
 Tx frame rate
[1/s]: 125 395 241

Table continues on the next page...

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 148 / 199

Table 44. Command line tools for EtherCAT (continued)

 Tx rate
[KByte/s]: 7.3 24.0 14.6
 Rx frame rate
[1/s]: 125 395 241
 Rx rate
[KByte/s]: 7.3 24.0 14.6
 Common:
 Tx frames:
18846
 Tx bytes:
1169192
 Rx frames:
18845
 Rx bytes:
1169132
 Lost frames: 0
 Tx frame rate
[1/s]: 125 395 241
 Tx rate
[KByte/s]: 7.3 24.0 14.6
 Rx frame rate
[1/s]: 125 583 241
 Rx rate
[KByte/s]: 7.3 210.4 14.6
 Loss rate
[1/s]:
0 -0 0
 Frame loss
[%]: 0.0 -0.0 0.0
 Distributed clocks:
 Reference clock:
Slave 0
 Application time:
0

ethercat states
[OPTIONS] <STATE >

Requests
application - layer
states

STATE can be 'INIT ',
'PREOP ', 'BOOT ',
'SAFEOP ', or 'OP '.

Options:

• --alias -a <alias >

• -- position -p <pos >
Slave selection. See
the help of the 'slaves'
command.

None

• Numerical values can be specified either with decimal (no prefix), octal (prefix '0') or hexadecimal (prefix '0x

') base.

• More command-line information can be obtained by using the command ethercat --help.

 NOTE

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 149 / 199

11.4.3 System integration
An init script and a sysconfig file are provided to integrate the EtherCAT master as a service into a running system. These
are described below.

• Init Script

The EtherCAT master init script conforms to the requirements of the 'Linux Standard Base' (LSB). The script is installed to etc/
init.d/EtherCAT, before the master can be inserted as a service. Please note, that the init script depends on the sysconfig
file described below.

LSB defines a special comment block to provide service dependencies (that is, which services should be started before others)
inside the init script code. System tools can extract this information to insert the EtherCAT init script at the correct place in the
startup sequence:

 # Required - Start: $local_fs $syslog $network
 # Should - Start: $time ntp
 # Required - Stop: $local_fs $syslog $network
 # Should - Stop: $time ntp
 # Default - Start: 3 5
 # Default - Stop: 0 1 2 6
 # Short - Description: EtherCAT master
 # Description: EtherCAT master 1.5.2
 ### END INIT INFO

• Sysconfig file

For persistent configuration, the init script uses a sysconfig file installed to etc/sysconfig/EtherCAT, that is mandatory for
the init script. The sysconfig file contains all configuration variables needed to operate one or more masters. The documentation
is inside the file and included below:

#--
Main Ethernet devices.
#
The MASTER <X> _DEVICE variable specifies the Ethernet device for a master
with index 'X '.
#
Specify the MAC address (hexadecimal with colons) of the Ethernet device to
use. Example: "00:00:08:44: ab :66"
#
The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning : It tells
the master to accept the first device offered by any Ethernet driver.
#
The MASTER <X> _DEVICE variables also determine, how many masters will be
created: A non - empty variable MASTER0_DEVICE will create one master, adding a
non - empty variable MASTER1_DEVICE will create a second master, and so on.
#
MASTER0_DEVICE =""
MASTER1_DEVICE =""
#
Backup Ethernet devices
#
The MASTER <X> _BACKUP variables specify the devices used for redundancy. They
behaves nearly the same as the MASTER <X> _DEVICE variable, except that it
does not interpret the ff:ff:ff:ff:ff:ff address .
#
MASTER0_BACKUP =""
#
Ethernet driver modules to use for EtherCAT operation.
#

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 150 / 199

Specify a non - empty list of Ethernet drivers, that shall be used for
EtherCAT operation.
#
Except for the generic Ethernet driver module, the init script will try to
unload the usual Ethernet driver modules in the list and replace them with
the EtherCAT - capable ones. If a certain (EtherCAT - capable) driver is not
found, a warning will appear.
#
Possible values: 8139 too, e100, e1000, e1000e, r8169, generic, ccat, igb.
Separate multiple drivers with spaces.
#
Note: The e100, e1000, e1000e, r8169, ccat and igb drivers are not built by
default. Enable them with the --enable -<driver > configure switches.
#
Attention: When using the generic driver, the corresponding Ethernet device
has to be activated (with OS methods, for example 'ip link set ethX up '),
before the master is started, otherwise all frames will time out.
#
DEVICE_MODULES =""
#
Flags for loading kernel modules.
#
This can usually be left empty. Adjust this variable, if you have problems
with module loading.
#
MODPROBE_FLAGS ="-b"
#--

Starting the Master as a service: After the init script and the sysconfig file are placed into the right location, the EtherCAT
master can be inserted as a service.The init script can also be used for manually starting and stopping the EtherCAT master.
It should be executed with one of the parameters: start, stop, restart or status. For example:

$/etc/init.d/EtherCAT restart
 Shutting down EtherCAT master done
 Starting EtherCAT master done

11.4.4 Running a sample application
This section describes how to run a sample application.

List of materials

Following is the list of materials needed for running the Igh EtherCAT application:

• OpenIL board (LS1021-IoT, LS1043ARDB, and LS1046ARDB)

• BECKHOFF EK1100 and EL2008

• 24V Power Supply

The figures below show the required materials:

• The figure below shows the board and BECKHOFF connected by a Ethernet cable.

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 151 / 199

Figure 44. Board connects with BECKHOFF

• The figure below shows the BECKHOFF's EK1100 and EL2008.

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 152 / 199

Figure 45. BECKHOFF EK1100 and EL2008

For more information about EL2008, see https://www.beckhoff.com/english.asp?ethercat/el2008.htm.

Follow the steps below to run a sample application:

1. Update the sysconfig file etc/sysconfig/EtherCAT for the persistent configuration.Variables MASTER0_DEVICE and
DEVICE_MODULES need to be changed to the specified MAC and driver type. The MAC address is the one that is
connected to BECKHOFF.

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 153 / 199

https://www.beckhoff.com/english.asp?ethercat/el2008.htm

For example, the MAC used is 00:00:08:44: ab :66 and the drivers used are generic:

MASTER0_DEVICE ="00:00:08:44: ab :66"
DEVICE_MODULES ="generic"

2. Execute the initialization script and specify the parameter start.

$ /etc/init.d/ethercat restart

3. Run the example application.

$ ec_user_example

• If the init script fails to start EtherCAT master, the command insmod or modprobe can be used to load the module
directly: ec_master.ko and ec_generic.ko are found in the path /lib/modules/4.9.35-ipipe/extra/

$ insmod ec_master.ko main_devices= MAC address
$ insmod ec_generic.ko

• Run the example application.

$ ec_user_example

• Check whether the LED0 on EL2008 is blinking with 1Hz.

If the console prompts Failed to open /dev/EtherCAT0, the module fails to load, please check it.

 ATTENTION

NXP Semiconductors
EtherCAT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 154 / 199

Chapter 12
nxp-servo
nxp-servo is a CiA402 (also referred to as DS402) profile framework based on Igh CoE interface (An EtherCAT Master stack,
see EtherCAT section for details). It abstracts the CiA 402 profile and provides an easily-usable API for the Application developer.

The nxp-servo project consists of a basic library libnservo and several auxiliary tools.

The application developed with libnservo is flexible enough to adapt to the changing of CoE network by modifying the xml config
file, which is loaded when the application starts. The xml config file describes the necessary information, including EtherCAT
network topology, slaves configurations, masters configurations and all axles definitions.

12.1 CoE network
A typical CoE network is shown in the figure below:

Figure 46. CoE network

There are three CoE servos on this network and we name them slave x as the position they are. Each CoE servo could have
more then one axle. The libnservo then initiates the CoE network and encapsulates the detail of network topology into axle nodes.
So the developer could focus on the each axle operation without taking care of the network topology.

12.2 Libnservo Architecture
nxp-servo is running on top of Igh EtherCAT stack. And the Igh stack provides CoE communication mechanisms - Mailbox and
Process Data. Using these mechanisms, nxp-servo could access the CiA Object Dictionary located on CoE servo.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 155 / 199

Figure 47. Libnservo architecture

Control task initiates the master, all slaves on the CoE network and registers all PDOs to Igh stack, then constructs a data structure
to describe each axle. Finally, the control task creates a task to run the user task periodically.

12.3 Xml Configuration
This section focuses on how the xml config file describes a CoE network.

The skeleton of XML config is shown as in figure below:

<?xml version="1.0" encoding="utf-8"?>
<Config Version="1.2">
 <PeriodTime>#10000000</PeriodTime>
 <MaxSafeStack>#8192</MaxSafeStack>
 <master_status_update_freq>#1</master_status_update_freq>
 <slave_status_update_freq>#1</slave_status_update_freq>
 <axle_status_update_freq>#1</axle_status_update_freq>
 <sync_ref_update_freq>#2</sync_ref_update_freq>
 <is_xenomai>#1</is_xenomai>
 <sched_priority>#82</sched_priority>
 <Masters>
 <Master>
 ...
 <\Master>
 <Master>
 ...
 <\Master>
 <\Master>

 <Axles>

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 156 / 199

 <Axle>
 ...
 <\Axle>
 <Axle>
 ...
 <\Axle>
 <\Axles>
</Config>

• All config elements must be inside the <Config> element.

• All config elements shown above are mandatory.

• The numerical value started with # means that it is a decimal value.

• The numerical value started with#x means that it is a hexadecimal value.

• <PeriodTime> element means that the period of control task is 10ms.

• <MaxSafeStack> means the stack size, and it is an estimated value. 8K is enough to satisfy most application.

• <master_status_update_freq> element means the frequency of masters status update. the value #x means update the
masters status every task period.

• <slave_status_update_freq> element means the frequency of slaves status update. the value #1 means update the slaves
status every task period.

• <axle_status_update_freq> element means the frequency of axles status update. the value #1 means update the axles status
every task period.

• <sync_ref_update_freq> element means the frequency of reference clock update. the value #2 means update the axles status
every two task period.

• <is_xenomai> element means whether Xenomai is supported. the value #1 means that Xenomai is supported on this host,
and #0 means not.

• <sched_priority> element means the priority of the user task.

• <Masters> element could contain more then one Master element . For most cases, there is only one master on a host.

• <Axles> element could contain more then one Axle element, which is the developer really care about.

12.3.1 Master Element
As CoE network section shown, the Master could has many slaves, so the Master element will consist of some Slave elements.

 <Master>
 <Master_index>#0</Master_index>
 <Reference_clock>#0</Reference_clock>
 <Slave alias="#0" slave_position="#0">

 </Slave>
 <Slave alias="#1" slave_position="#1">

 </Slave>
 </Master>

• <Master_index> element means the index of the master. as mentioned above, for many cases, there is only one master, so
the value of this element is always #0.

• <Reference_clock> element is used to indicate which slave will be used the reference clock.

• <Slave> element means there is a slave on this master.

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 157 / 199

12.3.1.1 Slave Element

 <Slave alias="#0" slave_position="#0">
 <VendorId>#x66668888</VendorId>
 <ProductCode>#x20181302</ProductCode>
 <Name>2HSS458-EC</Name>
 <Emerg_size>#x08</Emerg_size>
 <WatchDog>
 <Divider>#x0</Divider>
 <Intervals>#4000</Intervals>
 </WatchDog>
 <DC>
 <SYNC SubIndex='#0'>
 <Shift>#0</Shift>
 </SYNC>
 </DC>
 <SyncManagers force_pdo_assign="#1">
 <SyncManager SubIndex="#0">
 ...
 </SyncManager>
 <SyncManager SubIndex="#1">
 ...
 </SyncManager>
 </SyncManagers>
 <Sdos>
 <Sdo>
 ...
 </Sdo>
 <Sdo>
 ...
 </Sdo>
 </Sdos>
 </Slave>

• alias attribute means the alias name of this slave.

• slave_position attribute means which position of the slave is on this network.

• <Name>element is the name of the slave.

• <Emerg_size> element is always 8 for all CoE device.

• <WatchDog> element is used to set the watch dog of this slave.

• <DC> element is used to set the sync info.

• <SyncManagers> element should contain all syncManager channels.

• <Sdos> element contains the default value we want to initiate by SDO channel.

12.3.1.1.1 SyncManagers Element

For a CoE device, there are generally four syncManager channels.

• SM0: Mailbox output

• SM1: Mailbox input

• SM2: Process data outputs

• SM3: process data inputs

 <SyncManager SubIndex="#2">
 <Index>#x1c12</Index>

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 158 / 199

 <Name>Sync Manager 2</Name>
 <Dir>OUTPUT</Dir>
 <Watchdog>ENABLE</Watchdog>
 <PdoNum>#1</PdoNum>
 <Pdo SubIndex="#1">
 <Index>#x1600</Index>
 <Name>RxPdo 1</Name>
 <Entry SubIndex="#1">
 ...
 </Entry>
 <Entry SubIndex="#2">
 ...
 </Entry>
 </Pdo>
 </SyncManager>

• <Index> element is the object address.

• <Name> is a name of this syncmanager channel.

• <Dir> element is the direction of this syncmanager channel.

• <Watchdog> is used to set watchdog of this syncmanager channel.

• <PdoNum> element means how many PDO we want to set.

• <Pdo SubIndex="#1> element contains the object dictionary entry we want to mapped.

— <Index> PDO address.

— <Name> PDO name

— <Entry> the object dictionary we want to mapped.

The Entry element is used to describe a object dictionary we want to mapped.

 <Entry SubIndex="#1">
 <Index>#x6041</Index>
 <SubIndex>#x0</SubIndex>
 <DataType>UINT</DataType>
 <BitLen>#16</BitLen>
 <Name>statusword</Name>
 </Entry>

12.3.1.1.2 Sdo Element

The Sdo element is used to set the default value of a object dictionary.

 <Sdo>
 <Index>#x6085</Index>
 <Subindex>#x0</Subindex>
 <value>#x1000</value>
 <BitLen>#32</BitLen>
 <DataType>DINT</DataType>
 <Name>Quick_stop_deceleration</Name>
 </Sdo>

The element shown in figure above means set the Object Dictionary "6085" to 0x1000.

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 159 / 199

12.3.2 Axle Element

 <Axle master_index='#0' slave_position="#0" AxleIndex="#0" AxleOffset="#0">
 <Mode>pp</Mode>
 <Name>x-axle</Name>
 <reg_pdo>
 ...
 </reg_pdo>
 <reg_pdo>
 ...
 </reg_pdo>
 </Axle>

• master_index attribute indicates which master this axle belong to.

• slave_position attribute indicates which slave this axle belong to.

• AxleOffset attribute indicates which axle this axle is on the slave. As mentioned above, a CoE slave could have more then
on axle . If this axle is the second axle on the slave, set AxleOffset="#1" .

• <Mode> means which mode this axle will work on.

• <Name> is the name of this axle.

• <reg_pdo> is the PDO entry we want to register.

reg_pdo element

 <reg_pdo>
 <Index>#x606c</Index>
 <Subindex>#x0</Subindex>
 <Name></Name>
 </reg_pdo>

12.4 Test

12.4.1 Hardware Preparation
• A CoE servo system

A CoE servo system includes a CoE servo and a motor. In this test, '2HSS458-EC' servo system shown as in figure below
will be used.

• A board supported on OpenIL

In this test, LS1046ARDB will be used.

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 160 / 199

12.4.2 Software Preparation
Make sure the below config options is selected when configuring OpenIL.

• BR2_PACKAGE_IGH_ETHERCAT=y

• BR2_PACKAGE_LIBXML2=y

• BR2_PACKAGE_QORIQ_SERVO=y

12.4.3 CoE Network Detection
• Igh configuration

— Configure the MASTER0_DEVICE field of the /etc/ethercat.conf

Set MASTER0_DEVICE to the MAC address to indicate which port the Igh uses .

— Configure DEVICE_MODULES="generic" of the /etc/ethercat.conf

• Using the command

 [root@OpenIL:~]#ethercatctl start

to start Igh service.

• Check CoE servo using below command.

[root@OpenIL:~]#ethercat slaves
0 0:0 PREOP + 2HSS458-EC

12.4.4 Start Test
Note: The Position encoder resolution and Velocity encoder resolution of "2HSS458-EC" servo system are both 4000 . It means
the ratio of encoder increments per motor revolution.

• Profile Position mode test

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 161 / 199

— Start the test service as below.

[root@OpenIL:~]# nservo_run -f /root/nservo_example/hss248_ec_config_pp.xml &

— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root@OpenIL:~]# ethercat slaves
0 0:0 OP + 2HSS458-EC

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root@OpenIL:~]# ethercat master | grep Phase
 Phase: Operation

— Run below commands to test whether the motor works.

◦ Get current mode of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Position Mode

◦ Get current position of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_position
get_current_position of the axle 0 : 0

◦ Get the profile speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_profile_speed
get_profile_speed of the axle 0 : 800000

The value 800000 means 200 revolutions per second.

◦ Set profile speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c set_profile_speed:20000
set_profile_speed of the axle 0 : 20000

Set profile speed to 5 revolutions per second.

◦ Set target position of axle 0

[root@OpenIL:~]# nservo_client -c set_position:400000
set_position of the axle 0 : 400000

The value 400000 means that the motor will turn 100 rounds.

(target_position:400000 - current_position:0) / 4000 = 100

◦ Get current speed of axle 0

[root@OpenIL:~]# nservo_client -a 0 -c get_speed
get_speed of the axle 0 : 19999

◦ Get target position of axle 0

[root@OpenIL:~]# nservo_client -a 0 -c get_target_position
get_target_position of the axle 0 : 400000

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 162 / 199

— Exit

[root@OpenIL:~]# nservo_client -c exit

• Profile Velocity mode test

— Start the test service as below.

[root@OpenIL:~]# nservo_run -f /root/nservo_example/hss248_ec_config_pv.xml &

— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root@OpenIL:~]# ethercat slaves
0 0:0 OP + 2HSS458-EC

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root@OpenIL:~]# ethercat master | grep Phase
 Phase: Operation

— Run below commands to test whether the motor works.

◦ Get current mode of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Velocity Mode

◦ Set target speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c set_speed:40000
set_speed of the axle 0 : 40000

The value 40000 means that the motor will turn with 10 revolutions per second.

◦ Get current speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_speed
get_speed of the axle 0 : 32000

◦ Get target speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c get_target_speed
get_target_speed of the axle 0 : 40000

— Exit

[root@OpenIL:~]# nservo_client -c exit

NXP Semiconductors
nxp-servo

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 163 / 199

Chapter 13
FlexCAN
The following sections provide an introduction to the FlexCAN standard, details of the CAN bus, the Canopen communication
system, details of how to integrate FlexCAN with OpenIL, and running a FlexCAN application.

13.1 Introduction
Both the LS1021A and LS1028A boards have the FlexCAN module. The FlexCAN module is a communication controller
implementing the CAN protocol according to the CAN 2.0 B protocol specification. The main sub-blocks implemented in the
FlexCAN module include an associated memory for storing message buffers, Receive (Rx) Global Mask registers, Receive
Individual Mask registers, Receive FIFO filters, and Receive FIFO ID filters. A general block diagram is shown in the following
figure. The functions of these submodules are described in subsequent sections.

Figure 48. FlexCAN block diagram

13.1.1 CAN bus
CAN (Controller Area Network) is a serial bus system. A CAN bus is a robust vehicle bus standard designed to
allow microcontrollers and devices to communicate with each other in applications without a host computer. Bosch published
several versions of the CAN specification and the latest is CAN 2.0 published in 1991. This specification has two parts; part A is
for the standard format with an 11-bit identifier, and part B is for the extended format with a 29-bit identifier. A CAN device that
uses 11-bit identifiers is commonly called CAN 2.0A and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B.

CAN is a multi-master serial bus standard for connecting Electronic Control Units [ECUs] also known as nodes. Two or more
nodes are required on the CAN network to communicate. The complexity of the node can range from a simple I/O device up to

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 164 / 199

https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Multi-master_bus
https://en.wikipedia.org/wiki/Serial_bus

an embedded computer with a CAN interface and sophisticated software. The node may also be a gateway allowing a standard
computer to communicate over a USB or Ethernet port to the devices on a CAN network. All nodes are connected to each other
through a two wire bus. The wires are a twisted pair with a 120 Ω (nominal) characteristic impedance.

High speed CAN signaling drives the CAN high wire towards 5 V and the CAN low wire towards 0 V when transmitting a dominant
(0), and does not drive either wire when transmitting a recessive (1). The dominant differential voltage is a nominal 2 V. The
termination resistor passively returns the two wires to a nominal differential voltage of 0 V. The dominant common mode voltage
must be within 1.5 to 3.5 V of common and the recessive common mode voltage must be within +/-12 of common.

Figure 49. High speed CAN signaling

Figure 50. Base frame format

Figure 51. High speed CAN network

13.1.2 CANopen
CANopen is a CAN-based communication system. It comprises higher-layer protocols and profile specifications. CANopen has
been developed as a standardized embedded network with highly flexible configuration capabilities. Today it is used in various
application fields, such as medical equipment, off-road vehicles, maritime electronics, railway applications, or building automation.

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 165 / 199

CANopen provides several communication objects, which enable device designers to implement desired network behavior into
a device. With these communication objects, device designers can offer devices that can communicate process data, indicate
device-internal error conditions or influence and control the network behavior. As CANopen defines the internal device structure,
the system designer knows exactly how to access a CANopen device and how to adjust the intended device behavior.

• CANopen lower layers

CANopen is based on a data link layer according to ISO 11898-1. The CANopen bit timing is specified in CiA 301 and allows
the adjustment of data rates from 10 kbit/s to 1000 kbit/s. Although all specified CAN-ID addressing schemata are based on
the 11-bit CAN-ID, CANopen supports the 29-bit CAN-ID as well. Nevertheless, CANopen does not exclude other physical
layer options.

• Internal device architecture

A CANopen device consists of three logical parts. The CANopen protocol stack handles the communication via the CAN
network. The application software provides the internal control functionality. The CANopen object dictionary interfaces the
protocol as well as the application software. It contains indices for all used data types and stores all communication and
application parameters. The CANopen object dictionary is most important for CANopen device configuration and diagnostics.

• CANopen protocols

— SDO protocol

— PDO protocol

— NMT protocol

— Special function protocols

— Error control protocols

The following figure shows the CANopen architecture.

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 166 / 199

Figure 52. CANopen architecture

13.2 FlexCAN integration in OpenIL
For LS1021A, there are four CAN controllers. Two CAN controllers (CAN3 and CAN4) are used to communicate with each other.
CAN4 is assigned to core0, which runs Linux and CANOpen as master node, whereas CAN3 is assigned to core1, which runs
the baremetal and CANOpen as slave node. For LS1028A, there are two CAN controllers, CAN1 and CAN2, and both of them
are used in LS1028ARDB board.

13.2.1 LS1021AIOT CAN resource allocation
This section describes steps for assigning CAN4 to Linux and CAN3 to baremetal core, and how to change or configure it. These
examples assume that CAN1 and CAN2 are not enabled, and the pins of CAN1 and CAN2 are used by other IPs.

1. Assigning CAN4 to Linux

In Linux, the port is allocated through the DTS file. DTS file path is industry-linux/arch/arm/boot/dts/ls1021a-
iot.dts. Content related to CAN ports is as follows:

 /* CAN3 port */
 &can2
 {
 status = " disabled ";
 };

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 167 / 199

 /* CAN4 port */
 &can3
 {
 status = "okay";
 };

2. Assigning CAN3 to Baremetal

In baremetal, the port is allocated through the flexcan.c file. The flexcan.c path is industry-uboot/drivers/flexcan/
flexcan.c. In this file, you need to define the following variables:

a. struct can_bittiming_t flexcan3_bittiming = CAN_BITTIM_INIT(CAN_500K);

Set bit timing and baud rate (500K) of the CAN port.

 NOTE

b. struct can_ctrlmode_t flexcan3_ctrlmode

struct can_ctrlmode_t flexcan3_ctrlmode =
{
 .loopmode = 0, /* Indicates whether the loop mode is enabled */
 .listenonly = 0, /* Indicates whether the only-listen mode is enabled */
 .samples = 0,
 .err_report = 1,
};

c. struct can_init_t flexcan3

struct can_init_t flexcan3 =
{
 .canx = CAN3, /* Specify CAN port */
 .bt = &flexcan3_bittiming,
 .ctrlmode = &flexcan3_ctrlmode,
 .reg_ctrl_default = 0,
 .reg_esr = 0
};

d. Optional parameters

• CAN port

#define CAN3 ((struct can_module *)CAN3_BASE)
#define CAN4 ((struct can_module *)CAN4_BASE)

• Baud rate

#define CAN_1000K 10
#define CAN_500K 20
#define CAN_250K 40
#define CAN_200K 50
#define CAN_125K 80
#define CAN_100K 100
#define CAN_50K 200
#define CAN_20K 500
#define CAN_10K 1000
#define CAN_5K 2000

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 168 / 199

13.2.2 Introducing the function of CAN example code
CAN example code supports the CANopen protocol. It mainly implements three parts of functions: network manage function
(NMT protocol), service data transmission function (SDO protocol), and process data transmission function (PDO protocol). NMT
protocol can manage and monitor slave nodes, include heart beat message. SDO protocol can transmit single or block data. The
PDO protocol can transmit process data that requires real time.

CAN example calls the CANopen interfaces, described in the table below:

Table 45. CAN Net APIs and their description

API name (type) Description

UNS8 canReceive_driver (CAN_HANDLE fd0, Message * m) Socketcan receive CAN messages

• fd0 – socketcan handle

• m – receive buffer

UNS8 canSend_driver (CAN_HANDLE fd0, Message const *
m)

Socketcan send CAN messages

• fd0 – socketcan handle

• m – CAN message to be sent

void setNodeId(CO_Data* d, UNS8 nodeId) Set this node id value.

• d – object dictionary

• nodeId – id value (up to 127)

UNS8 setState(CO_Data* d, e_nodeState newState) Set node state

• d – object dictionary

• newState – The state that needs to be set

Returns 0 if ok, > 0 on error

void canDispatch(CO_Data* d, Message *m) CANopen handles data frames that CAN receive.

• d – object dictionary

• m – Received CAN message

void timerForCan(void) CANopen virtual clock counter.

UNS8 sendPDOrequest (CO_Data * d, UNS16 RPDOIndex) Master node requests slave node to feedback specified data.

• d – object dictionary

• RPDOIndex – index value of specified data

UNS8 readNetworkDictCallback (CO_Data* d, UNS8 nodeId,
UNS16 index, UNS8 subIndex, UNS8 dataType,
SDOCallback_t Callback, UNS8 useBlockMode)

The master node gets the specified data from the slave node.

• d – object dictionary

• nodeId – the id value of slave node

• index – the index value of the specified data

• subIndex – the subindex value of the specified data

Table continues on the next page...

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 169 / 199

Table 45. CAN Net APIs and their description (continued)

API name (type) Description

• dataType – the data type of the specified data

• Callback – callback function

• useBlockMode – specifies whether it is a block
transmission

UNS8 writeNetworkDictCallBack (CO_Data* d, UNS8 nodeId,
UNS16 index, UNS8 subIndex, UNS32 count, UNS8 dataType,
void *data, SDOCallback_t Callback, UNS8 useBlockMode)

The master node sets the specified data to the slave node.

• d – object dictionary

• nodeId – the id value of slave node

• index – the index value of the specified data

• subIndex – the subindex value of the specified data

• count – the length of the specified data

• dataType – the data type of the specified data

• Callback – callback function

• useBlockMode – specifies whether it is a block
transmission

13.3 Running a CAN application
The following sections describe the hardware and software preparation steps for running a CAN application. The hardware
preparation is described separately for the LS1021A-IoT and LS1028ARDB, but the sections Compiling the CANopen-app binary
for the master node, Running the CANopen application, and Running the Socketcan commands are applicable to both LS1021A-
IoT and LS1028A platforms.

13.3.1 Hardware preparation for LS1021-IoT
For LS1021-IoT, the list of hardware required for implementing the FlexCAN demo is as follows:

• LS1021A-IoT boards

• Two CAN hardware interfaces (for example, CAN3 and CAN4 for LS1021A-IoT)

• Two CAN transceivers (for example: TJA1050)

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 170 / 199

Figure 53. Hardware diagram for the FlexCan demo

— Line1 and line3 are 5.0 V.

— Line2 and line4 are GND.

— Line5 is CAN3 Tx.

— Line6 is CAN3 Rx.

— Line7 is CAN4 Rx.

— Line8 is CAN4 Tx.

 NOTE

13.3.2 Hardware preparation for LS1028ARDB
For LS1028ARDB, below hardware is required:

• LS1028ARDB board

• Two cables to connect CAN1 and CAN.

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 171 / 199

The hardware connection diagram is as shown in the following figure

Figure 54. Physical connection for CAN using LS1028ARDB

13.3.3 Compiling the CANopen-app binary for the master node
This section describes the procedure for compiling the CANopen-app binary for the master node, for both LS1021A and LS1028A
platforms.

CANopen application's name is CANopen-app. Perform the steps listed below to compile Canopen-app as linux command to the
target/usr/bin directory.

1. Configure cross-toolchain on your host environment.

2. Use the commands below:

$ git clone https://github.com/openil/openil.git
$ cd openil # checkout to OpenIL-201904
$ make nxp_ls1021aiot_baremetal_defconfig
or
$ make nxp_ls1028ardb-64b_defconfig
$ make

3. The generated openil image file is in the output/images/ directory.

4. Download the sdcard.img image file to the SD card:

In U-Boot mode, first run the tftp command for downloading sdcard.img to the buffer. Then, run the mmc command for
downloading the sdcard.img to SD card.

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 172 / 199

Make sure to enable the below options before building the image:

$ make menuconfig
Target packages --->
 Libraries --->
 Networking --->
 [*] canfestival
 driver (socket) --->
 (--SDO_MAX_LENGTH_TRANSFER=512 --SDO_BLOCK_SIZE=75
 --SDO_MAX_SIMULTANEOUS_TRANSFERS=1) additional configure options
 [*] install examples
 [*] libsocketcan
 Networking applications --->
 [*] can-utils
 [*] iproute2

 NOTE

• The following options are displayed only when the canfestival option is set to Y.

• Linux uses the SocketCAN interface, so the driveroption selects the socket.

• The following additional configure options can be configured in the config.h file of CANopen:

Parameter description:

— --SDO_MAX_LENGTH_TRANSFER: Sets buffer size of SDO protocol.

— -- SDO_BLOCK_SIZE: Sets the maximum number of frames that can be sent by SDO block transport
protocol.

— --SDO_MAX_SIMULTANEOUS_TRANSFERS: Sets the number of SDO modules.

• Install binary application to openil filesystem, if theinstall examples option is set to Y.

 NOTE

13.3.4 Running the CANopen application
This section describes the procedure for running the CANopen-app application. Only the LS1021A platforms support this
application.

1. First, boot the LS1021A-IoT board.

2. Waiting for the baremetal core to output below information:

Note: the CANopen protocol starts to run!
=>

3. Then, run the CANopen-app command in any directory in Linux prompt. While executing this command, first run the test
code.

4. After the test code is completed, you can implement the required instructions. The command CANopen-app execution
process steps are described below:

a. First, indicate whether the CAN interface has opened successfully. All commands are dynamically registered. Then,
indicate whether the command was registered successfully.

• Command registration log

Command Registration Log:
[root@OpenIL:~]# CANopen-app
[80.899975] IPv6: ADDRCONF(NETDEV_CHANGE): can0: link becomes ready
Note: open the CAN interface successfully!

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 173 / 199

"can_quit" command: register OK!
"setState" command: register OK!
"showPdo" command: register OK!
"requestPdo" command: register OK!
"sdo" command: register OK!
"" command: register OK!
"test_startM" command: register OK!
"test_sdoSingle" command: register OK!
"test_sdoSingleW" command: register OK!
"test_sdoBlock" command: register OK!
"test_showPdoCyc" command: register OK!
"test_showpdoreq" command: register OK!
"test_requestpdo" command: register OK!

b. There are nine test codes in total, tests 1 to 9. Test code details are shown in the test log.

• Test code log “---test---” indicates that the test code begins.

• Firstly, the execution rights of the SDO and PDO protocol are explained.

• The tests 1~4 are SDO protocol test codes. After starting the CANopen master node, it automatically enters
into initialization and pre-operation mode.

• The test5 is a test code that master node enters the operation mode and starts all slave nodes.

• The tests 6~9 are PDO protocol test codes.

Test Code Log:
------------------------- test ---------------------------
Note: Test code start execute...
 SDO protocol is valid in preoperation mode, but PDO protocol is invalid!
 SDO and PDO protocol are both valid in operation mode!
 Console is invalid when testing!
--
Note: test1--Read slave node single data by SDO.
Note: master node initialization is complete!
Note: master node entry into the preOperation mode!
Note: Alarm timer is running!
Note: slave node "0x02" entry into "Initialisation" state!
--
Note: test2--Write 0x2CD5 to slave node by SDO.
Note: Master write a data to 0x02 node successfully.
--
Note: test3--Read slave node single data by SDO again.
Note: reveived data is 0x2CD5
--
Note: test4--Read slave node block data by SDO.
---------------- text ------------------
Note: reveived string ==>
CANopen is a CAN-based communication system.
It comprises higher-layer protocols and profile specifications.
CANopen has been developed as a standardized embedded network with highly flexible
configuration capabilities.
It was designed originally for motion-oriented machine control systems, such as handling
systems.
Today it is used in various application fields, such as medical equipment, off-road
vehicles, maritime electronics, railway applications, or building automation.

--
--
Note: test5--Master node entry operation mode, and start slave nodes!
Note: master node entry into the operation mode,and start all slave nodes!

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 174 / 199

--
Note: test6--Master node show requested PDO data.
Note: Rpdo4 data is " "
--
Note: test7--Master node request PDO data.
--
Note: test8--Master node show requested PDO data.
Note: Rpdo4 data is "require"
Note: slave node "0x02" entry into "Operational" state!
--
Note: test9--Master node show received cycle PDO data.
Note: Rpdo2 data is " cycle"
--

tests 1 to 9 are not commands.

 NOTE

c. After the test code is executed, it automatically prints the list of commands. Num00~06 are normal commands. After
executing these instructions without parameters, the instruction usage is displayed. Num08~14 are test commands.
All test commands except num10 have no parameters. Argument of Num10 is a 16-bit integer.

• Now the user can execute any command in the command list.

Command List

Command List:

 num | command | introduction

 00 | ctrl_quit | console thread exit!

 01 | help | command list

 02 | can_quit | exit CANopen thread

 03 | setState | set the CANopen node state

 04 | showPdo | show the data of RPDO

 05 | requestPdo | request the data of RPDO

 06 | sdo | read/write one entry by SDO protocol

 07 | |

 08 | test_startM | test -- Start master

 09 | test_sdoSingle | test -- Read slave node single data

 10 | test_sdoSingleW | test -- Write slave node single data

 11 | test_sdoBlock | test -- Read slave node block data

 12 | test_showPdoCyc | test -- Show cycle PDO data

 13 | test_showpdoreq | test -- Show requested PDO data

 14 | test_requestpdo | test -- Request PDO data

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 175 / 199

Note: You can send command by console!
Note: Test code execution is complete!

Example: The following example shows the usage log after running the sdo command without any parameters.

SDO Command:
sdo
usage: sdo -type index subindex nodeid data
 type = "r"(read), "w"(write), "b"(block)
 index = 0~0xFFFF,unsigned short
 subindex = 0~0xFF,unsigned char
 nodeid = 1~127,unsigned char
 data = 0 ~ 0xFFFFFFFF

13.3.5 Running the Socketcan commands
This section describes the steps for running Socketcan commands that can be performed on either of the boards (LS1021A-IoT
or LS1021ARDB). These commands are executed on Linux. The standard Socketcan commands are the following:

1. Open the can0 port.

$ ip link set can0 up

2. Close the can0 port.

$ ip link set can0 down

3. Set the baud rate to 500K for the can0 port

$ ip link set can0 type can bitrate 500000

4. Set can0 port to Loopback mode.

$ ip link set can0 type can loopback on

5. Send a message through can0. 002 (HEX) is node id, and this value must be 3 characters. 2288DD (HEX) is a message,
and can take a value up to 8 bytes.

$ cansend can0 002#2288DD

6. Monitor can0 port and wait for receiving data.

$ candump can0

7. See can0 port details.

$ ip -details link show can0

The third and fourth commands are valid when the state of can0 port is closed.

 NOTE

13.3.6 Testing CAN bus
Below is the sample code for testing the CAN bus on LS1028ARDB.

[root@OpenIL:~]# ip link set can0 down
[root@OpenIL:~]# ip link set can1 down

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 176 / 199

[root@OpenIL:~]# ip link set can0 type can loopback off
[root@OpenIL:~]# ip link set can1 type can loopback off
[root@OpenIL:~]# ip link set can0 type can bitrate 500000
[root@OpenIL:~]# ip link set can1 type can bitrate 500000
[root@OpenIL:~]# ip link set can0 up
[root@OpenIL:~]# ip link set can1 up
[root@OpenIL:~]# candump can0 &
[root@OpenIL:~]# candump can1 &
[root@OpenIL:~]# cansend can0 001#224466
 can0 001 [3] 22 44 66
[root@OpenIL:~]# can1 001 [3] 22 44 66
[root@OpenIL:~]# cansend can1 001#224466
 can0 001 [3] 22 44 66
 can1 001 [3] 22 44 66
[root@OpenIL:~]# cansend can1 001#113355
 can0 001 [3] 11 33 55
 can1 001 [3] 11 33 55
[root@OpenIL:~]# cansend can0 000#224466
 can0 000 [3] 22 44 66

NXP Semiconductors
FlexCAN

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 177 / 199

Chapter 14
NFC click board
NFC click board is a mikroBUS™ add-on board with a versatile near field communications controller from NXP — the PN7120
IC. NFC devices are used in contactless payment systems, electronic ticketing, smartcards, but also in retail and advertising —
inexpensive NFC tags can be embedded into packaging labels, flyers or posters.

This board is fully compliant with NFC Forum specifications. This implies that users can use the full potential of NFC and its three
distinct operating modes listed below:

1. Card emulation

2. Read/Write

3. P2P

14.1 Introduction
The NXP’s PN7120 IC integrates an ARM™ Cortex-M0 MCU, which enables easier integration into designs, because it requires
fewer resources from the host MCU. The integrated firmware provides all NFC protocols for performing the contactless
communication in charge of the modulation, data processing and error detection.

The board communicates with the target board MCU through the mikroBUS™ I2C interface, in compliance with NCI 1.0 host
protocols (NCI stands for NFC controller interface). RST and INT pins provide additional functionality. The board uses a 3.3V
power supply.

14.2 PN7120 features
PN7120 embeds a new generation RF contactless front-end supporting various transmission modes according to NFCIP-1 and
NFCIP-2, ISO/IEC14443, ISO/IEC 15693, ISO/IEC 18000-3, MIFARE and FeliCa specifications. It embeds an ARM Cortex-M0
microcontroller core loaded with the integrated firmware supporting the NCI 1.0 host communication.

14.3 Hardware preparation
Use the following hardware items for the NFC clickboard demo setup:

1. LS1028ARDB

2. NFC Click board

3. NFC Sample Card (tag）

You need to insert the NFC click board into the LS1028ardb mikroBUS1 slot.

 NOTE

14.4 Software preparation
In order to support NFC click board, use the following steps:

1. In OpenIL environment, use the command make menuconfig to enable the below options:

$make menuconfig
Target packages --->
 Hardware handling --->
 NXP QorIQ libraries --->
 [*] qoriq-libnfc-nci

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 178 / 199

http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1
http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1

2. In Linux kernel environment, make sure the below options are enabled:

$make linux-menuconfig
[*] Networking support --->
 <M> NFC subsystem support --->
 Near Field Communication (NFC) devices --->
 <M> NXP PN5XX based driver

The NXP PN5XX based driver only supports the Module mode.

 NOTE

3. Use the make command to create the images.

14.5 Testing the NFC click board
Use the following steps for testing the NFC Clickboard:

1. Install NFC driver module

[root@OpenIL:~]# modprobe pn5xx_i2c.ko

2. The following logs appear at the console after the above command is successful. The error information can be ignored in
this case.

3. Run the nfcDemoApp application

 [root@OpenIL:~]# nfcDemoApp poll

NXP Semiconductors
NFC click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 179 / 199

4. Put the NFC Sample Card (tag) on top of the NFC click board:

Printing the above information indicates successful card reading.

NXP Semiconductors
NFC click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 180 / 199

Chapter 15
BEE Click Board
This chapter introduces the features of the BEE Click Board and how to use it on LS1028ARDB.

15.1 Introduction
The BEE Click Board features the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver module from Microchip. The click is
designed to run on 3.3 V power supply only. It communicates with the target controller over an SPI interface.

15.2 Features
The features of the BEE Click Board are listed below:

• PCB antenna

• MRF24J40MA module

• Low current consumption (Tx 23 mA, Rx 19 mA, Sleep 2 μA)

• ZigBee stack

• MiWi™ stack

• SPI Interface

• 3.3 V power supply

15.3 Hardware preparation
Use the following hardware items for the BEE Click Board demo setup:

• Two LS1028ARDB Boards

• Two BEE Click Boards

The figure below describes the hardware setup for the BEE Click Board.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 181 / 199

Figure 55. BEE Click Board hardware setup

The WA pin of BEE Click Board connects with the NC pin.

 NOTE

15.4 Software preparation
In order to support BEE click board, use the following steps:

1. In OpenIL environment, use the command make menuconfig to enable the below options:

$make menuconfig
Target packages --->
 Hardware handling --->
 [*] i2c-tools
 NXP QorIQ libraries --->
 [*] qoriq-libbee

2. In Linux kernel environment, make sure the below options are enabled:

$make linux-menuconfig
Device Drivers --->
 SPI support --->
 <*> Freescale DSPI controller
 <*> User mode SPI device driver support

NXP Semiconductors
BEE Click Board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 182 / 199

 -*- GPIO Support --->
 [*] /sys/class/gpio/... (sysfs interface)
 Memory mapped GPIO drivers --->
 [*] MPC512x/MPC8xxx/QorIQ GPIO support

The above operation can be replaced by executing the command: make nxp_ls1028ardbXXXX_defconfig.

 NOTE

3. Use the make command to create the images.

15.5 Testing the BEE click board
The test application bee_demo is created by using the BEE Click Board library. This application can transfer the file between two
BEE Click Boards.

1. You need to create a file in any path. For example, ./samples/test.txt.

2. First, start a server node by running the command below:

bee_demo -s -f=XXX

The command parameters are as below:

• -s: This device node acts as a server.

• -f=XXX: This parameter is valid only on the server node. XXX is the file path (relative or absolute) to be transferred.

root@OpenIL-Ubuntu-LS1028ARDB:~# ls
samples
root@OpenIL-Ubuntu-LS1028ARDB:~# bee_demo -s -f=./samples/test.txt
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
BEE Click Board Demo.
This node is a server node.
Waiting for a client
Reading the content of the file

3. Start a client node on another LS1028ARDB by running the command bee_demo -c. In the above command, the parameter
-c implies that this device node acts as a client. After receiving the file, the client node automatically exits. The received
file is saved in the current path.

root@OpenIL-Ubuntu-LS1028ARDB:~# ls
 samples
 root@OpenIL-Ubuntu-LS1028ARDB:~# bee_demo -c
 spi mode: 0x0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 BEE Click Board Demo.
 This node is a client node.
 Starting to get a file
 Send the SEQ_REQ command.
 Send the SEQ_START command.
 Send the SEQ_START command.
 root@OpenIL-Ubuntu-LS1028ARDB:~# ls
 samples test.txt
 root@OpenIL-Ubuntu-LS1028ARDB:~#

NXP Semiconductors
BEE Click Board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 183 / 199

4. The following log is displayed to indicate that the server node finished sending a file.

Send the SEQ_INFO command.
Start to send the file
It's completed to send a file.

NXP Semiconductors
BEE Click Board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 184 / 199

Chapter 16
BLE click board
This chapter introduces the features of the BLE P click board and how to use it on NXP's LS1028A reference design board (RDB)

16.1 Introduction
BLE P click carries the nRF8001 IC that allows you to add Bluetooth 4.0 to your device. The click communicates with the target
board MCU through mikroBUS™ SPI (CS, SCK, MISO, MOSI), RDY and ACT lines, and runs on 3.3 V power supply.

BLE P click features a PCB trace antenna, designed for the 2400 MHz to 2483.5 MHz frequency band. The maximum device
range is up to 40 meters in open space.

16.2 Features
Following are the features provided by BLE P clickboard:

• nRF8001 Bluetooth low energy RF transceiver

— 16 MHz crystal oscillator

— Ultra-low peak current consumption <14 mA

— Low current for connection-oriented profiles, typically 2 μA

• PCB trace antenna (2400-2483.5 MHz, up to 40 meters)

• BLE Android app

• Interface: SPI (CS, SCK, MISO, MOSI), RDY and ACT lines

• 3.3 V power supply

16.3 Hardware preparation
Use the following hardware items for the BLE P click board demo setup:

1. LS1028ARDB

2. BLE P Click board

3. Android phone (option)

The figure below depicts the hardware setup required for the demo:

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 185 / 199

Figure 56. BLE P click board hardware setup

16.4 Software preparation
Use these steps for the BLE P click board demo software setup:

• Download the JUMA UART (Android app) by using the link: https://apkpure.com/juma-uart/com.juma.UART

• Then, run the steps below in order to support BLE P click board:

1. In OpenIL environment, use the command make menuconfig to enable the below options:

$make menuconfig
Target packages --->
 Hardware handling --->
 [*] i2c-tools
 NXP QorIQ libraries --->
 [*] qoriq-libblep

2. In Linux kernel environment, make sure the below options are enabled:

$make linux-menuconfig
Device Drivers --->
 SPI support --->

NXP Semiconductors
BLE click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 186 / 199

https://apkpure.com/juma-uart/com.juma.UART

 <*> Freescale DSPI controller
 <*> User mode SPI device driver support

3. Use the make command to create the images.

The above operation can be replaced by executing the make nxp_ls1028ardbXXXX_defconfig file.

 NOTE

16.5 Testing the BLE P click board
Use the following steps for testing the BLE P click board:

1. Running the blep_demo application.

The following log is displayed to indicate that the BLE P click board is initialized. At this time, you can scan for BLE P click
board from your mobile phone or your computer's Bluetooth device. The name of the BLE P click board used is “MikroE”

2. Connection log

Connect the BLE P click board via mobile app. On successful connection, the following log is displayed. Thereafter, the
application can communicate with the BLE P click board.

3. Disconnection log

NXP Semiconductors
BLE click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 187 / 199

Click the Disconnect button of the Android APP to disconnect from the BLE P click board. The following log displays that
the disconnection is successful:

4. Command line introduction

The blep _demo application supports four command lines: devaddr, name=, version, and echo.

a. devaddr

This command is used to obtain the MAC address of the BLE P click board. You can run this command at any time.

b. name=

This command is used to set the Bluetooth name of the ble p click board when broadcasting. No spaces are required
after the equal sign "=", and the content after the equal sign is the set name. The maximum length is 16 characters.

c. version

This command is used to obtain the version of the BLE P click board. You can run this command at any time.

d. echo

This command is used to send a string to the Android app. This command should be executed after the connection
is established. The maximum length is 20 characters.

The below log displays the message displayed after user tries to send a string when no connection is established:

NXP Semiconductors
BLE click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 188 / 199

The below log is displayed when user sends a string after a connection is established:

5. Receiving data

When the Android app sends a string:

NXP Semiconductors
BLE click board

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 189 / 199

Chapter 17
QT
This chapter introduces the QT feature for OpenIL and provides instructions on how to enable this feature on NXP's LS1028A
reference design board.

17.1 Introduction
Qt is a full development framework with tools designed to streamline the creation of applications and user interfaces for desktop,
embedded, and mobile platforms. For details, see http://doc.qt.io/qt-5/index.html

This section describes how to enable QT5 in OpenIL.

17.2 Software settings and configuration
Use the following steps to configure QT5 on target board and build the images.

1. Configure the target board: The configuration file nxp_ls1028ardb-64b_defconfig support prebuild QT for
LS1028ARDB board. Configure the image by following command:

make nxp_ls1028ardb-64b_defconfig

2. Enable QT5: Use the command make menuconfig to configure the QT5:

Target packages ->
Graphic libraries and applications (graphic/text) ->
[*] Qt5 ->
 [*] Compile and install examples (with code)
 [*] concurrent module
 [*] MySQL Plugin
 [*] PostgreSQL Plugin
 [*] gui module
 [*] widgets module
 [*] fontconfig support
 [*] GIF support
 [*] JPEG support
 [*] PNG support
 [*] qt5imageformats
 [*] qt5multimedia
 [*] qt5quickcontrols
 [*] qt5quickcontrols2

3. Build the image using the command:

make -j8

17.3 Hardware setup
For the QT setup, you require the following hardware:

1. Monitor that supports DP interface. Make sure it supports 1080P format, otherwise you need to adjust the parameters in
uboot.

2. Cable matters DisplayPort to DisplayPort (DP to DP Cable)

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 190 / 199

http://doc.qt.io/qt-5/index.html

3. USB wired/wireless mouse or keyboard

Figure 57. Hardware setup for QT

17.4 Running the QT5 demo
This section describes the steps for configuring the environment and running the Qt demos for LS1028ARDB.

17.4.1 Environment setting
Use the steps listed below to configure the environment settings:

• Make sure that the fonts directory exists in the /usr/share/ directory. If it does not exist, you can find it in the root directory,
and copy one or more to /usr/share, as shown in the example below:

1. The QT5 framework is configured now, and user can add any applications.

17.4.2 Running the demos
There are many sample demos in the directory /usr/lib/qt/examples. Following are some of the demos and their corresponding
commands:

1. Example1: /usr/lib/qt/examples/widgets/widgets/wiggly/wiggly --platform linuxfb

NXP Semiconductors
QT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 191 / 199

Figure 58. Example 1: Wiggly text

2. Example 2: /usr/lib/qt/examples/quickcontrols2/wearable/wearable --platform linuxfb

Figure 59. Example 2: Wearalbe system

3. Example 3: /usr/lib/qt/examples/gui/analogclock/analogclock --platform linuxfb

NXP Semiconductors
QT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 192 / 199

Figure 60. Example 3: Analog clock

NXP Semiconductors
QT

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 193 / 199

Chapter 18
EdgeScale client
This chapter describes edgescale, its features and the procedure to use Edgescale on NXP supported hardware platforms.

Notice: EdgeScale client is not enabled in OpenIL v1.8 release.

18.1 What is EdgeScale
EdgeScale is a unified, scalable, and secure device management solution for Edge Computing applications. It enables OEMs
and developers to leverage cloud compute frameworks like AWS Greengrass, Azure IoT and Aliyun on Layerscape devices. It
provides the missing piece of device security and management needed for customers to securely deploy and manage a large
number of Edge computing devices from the cloud. End-users and developers can use the EdgeScale cloud dashboard to
securely enroll Edge devices, monitor their health, attest and deploy container applications and firmware updates.

EdgeScale can also be used as a development environment to build containers and generate firmware.

18.2 Edgescale features
Following are the features supported by Edgescale:

• EdgeScale dashboard for users

• Secure device enrolment

• Secure key/certificate provisioning

• OTA: firmware update (LS1012A, LS1043. LS1046, or LS1028)

• Device status monitoring on the cloud

• Dynamic deployment of container-based applications

• The above specified features are currently supported in LSDK. For more details, please visit: EDGESCALE: EdgeScale for
Secure Edge Computing

18.3 Building EdgeScale client
To Build the EdgeScale client in OpenIL for LS1043A, LS1046A, and LS1028A, follow the configuration below:

Make menuconfig
Target packages --->
Edge-scale service --->
[*] qorio edgescale eds
[*] qorio eds kubelet
[*] qorio eds bootstrap

18.4 Procedure to start EdgeScale
For complete details on how to start EdgeScale, visit the URL https://doc.edgescale.org/.

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 194 / 199

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE
https://doc.edgescale.org/

Follow these steps after downloading the device identification info file (which is a script file):

1. Copy the script file to the DUT and run it using the command below:

sh xxxx.sh /dev/mmcblk0

2. Then, reboot the board.

3. Run the below command to start edgescale client in Linux prompt:

 sh /usre/local/edgescale/bin/startup.sh

 NOTE

NXP Semiconductors
EdgeScale client

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 195 / 199

Chapter 19
Revision history
The table below summarizes revisions to this document.

Table 46. Document revision history

Date Document
version

Topic cross- reference Change description

29/05/2020 1.8 PREEMPT-RT Added the section in Industrial features.

Interface naming in
Linux

Updated this section included in LS1028ARDB and LS1028ATSN.

Host system
requirements

Updated the section.

Running SELinux demo Updated the section.

- Some features earlier supported in Rev 1.7.1 are not supported in
Rev 1.8 release (Xenomai, OTA implementation, and EdgeScale
client).

20/02/20 1.7.1 Operation examples Updated this section.

17/01/20 1.7 nxp-servo Added the chapter.

IEEE 1588/802.1AS Added the chapter

LX2160ARDB Added the section.

Getting Open IL Updated the section.

NETCONF/YANG Other updates.

31/08/19 1.6 Using TSN features on
LS1028ARDB

• Information related to pcpmap command removed from the
section Basic TSN configuration examples on ENETC and Basic
TSN configuration examples on the switch.

• Port names "eno/swp0" changed to "swp0" for few tsntool
commands.

• Note added in section Stream identification for usage of
nulltagged and streamhandle parameters.

• Added the section TSN stream identification.

• Other minor updates.

Table 4 Updated the table "Host system mandatory packages". Added
autogen autoconf libtool and pkg-config packages.

BEE Click Board Added this chapter.

Web UI demo Added this section in NETCONF/YANG.

NETCONF/YANG • Added the section Enabling NETCONF feature in OpenIL and
other updates.

Table continues on the next page...

NXP Semiconductors

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 196 / 199

Table 46. Document revision history (continued)

Date Document
version

Topic cross- reference Change description

01/05/2019 1.5 Interface naming Added the section. Describes interface naming for U-Boot and Linux
for LS1028ARDB.

Using TSN features on
LS1028ARDB

Updated this section in the Chapter TSN .

BLE click board Added the Chapter.

EdgeScale client Added the Chapter.

Getting Open IL Updated the OpenIL version and Git tag.

01/02/2019 1.4 Supported NXP
platforms and
configurations

Added support for LS1028ARDB (64-bit and Ubuntu). Updated
various sections accordingly.

Getting Open IL Updated the OpenIL version and Git tag.

LS1028ARDB and
LS1028ATSN

Added this Section for LS1028ARDB support.

TSN Reorganized this Chapter and added separate Section for Using
TSN features on LS1028ARDB.

NFC click board Added the Chapter.

FlexCAN Minor updates in this Chapter. Also added the section, Hardware
preparation for LS1028ARDB and Testing CAN bus.

QT Added the Chapter.

15/10/2018 1.3.1 Getting Open IL Updated the OpenIL version and Git tag

31/08/2018 1.3 EtherCAT Added the chapter.

FlexCAN Added the chapter.

i.MX6QSabreSD
support.

Added the section in chapter NXP OpenIL platforms. Updated other
sections for i.MX6Q Sabre support.

Getting Open IL Updated the section.

Selinux demo Added the section, Installing basic packages and updated Basic
setup. Updates in other sections.

31/05/2018 1.2 Hardware requirements Updated the Section, "Hardware requirements" for RTnet.

Software requirements Updated the Section, "Software requirements" for RTnet.

18/04/2018 1.1.1 RTnet Added the Section, "RTnet".

Switch settings Added a note for LS1043A switch setting.

30/03/2018 1.1 Supported industrial
features

Added support for industrial IoT baremetal framework in this section.

Booting up the board Added a note for steps to be performed before booting up the board.

Reference
documentation

Added the section.

Table continues on the next page...

NXP Semiconductors
Revision history

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 197 / 199

Table 46. Document revision history (continued)

Date Document
version

Topic cross- reference Change description

22/12/2017 1.0 OPC UA Added the Chapter.

TSN Chapters for "1-board TSN demo" and "3-board TSN demo"
replaced by a single chapter, "TSN demo".

IEEE 1588 • Updated the section, 'Industrial Features'.

• -IEEE 1588 -'sja1105-ptp' support removed.

25/08/2017 0.3 - Set up the OpenIL websitehttp://www.openil.org/.

OTA implementation OTA - Xenomai Cobalt 64-bit and SJA1105 support added.

TSN Qbv support added.

SELinux SELinux support for LS1043 / LS1046 Ubuntu Userland added.

OP-TEE OP-TEE support for LS1021ATSN platform added.

4G-LTE Modem 4G LTE module - 64-bit support for LS1043ARDB, LS1046ARDB,
and LS1012ARDB added.

NXP OpenIL platforms Ubuntu Userland support for 64-bit LS1043ARDB and 64-bit
LS1046ARDB added.

26/05/2017 0.2 - Initial public release.

NXP Semiconductors
Revision history

Open Industrial User Guide, Rev. 1.8, 05/2020
User's Guide 198 / 199

http://www.openil.org/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and QorIQ are trademarks of
NXP B.V. Arm and Cortex are the registered trademarks of Arm Limited (or its subsidiaries) in
the EU and/or elsewhere. All other product or service names are the property of their respective
owners. All rights reserved.

Ⓒ 2020 NXP B.V.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 05/2020
Document identifier: OpenILUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Acronyms and abbreviations
	1.2 Reference documentation
	1.3 About OpenIL
	1.3.1 OpenIL Organization
	1.3.2 Host system requirements

	1.4 Feature set summary
	1.4.1 Compilation features
	1.4.2 Supported industrial features

	1.5 Supported NXP platforms and configurations
	1.5.1 Default compilation settings for NXP platforms

	2 Getting started
	2.1 Getting OpenIL
	2.2 OpenIL quick start
	2.2.1 Important notes
	2.2.2 Building the final images

	2.3 Booting up the board
	2.3.1 SD card bootup
	2.3.2 QSPI/FlexSPI bootup
	2.3.3 Starting up the board

	2.4 Basic OpenIL operations

	3 NXP OpenIL platforms
	3.1 Introduction
	3.2 LS1021A-TSN
	3.2.1 Switch settings
	3.2.2 Updating target images

	3.3 LS1021A-TWR
	3.3.1 Switch settings
	3.3.2 Updating target images

	3.4 LS1021A-IoT
	3.4.1 Switch settings
	3.4.2 Updating target images

	3.5 LS1043ARDB, LS1046ARDB and LS1046AFRWY
	3.5.1 Switch settings
	3.5.2 Updating target images

	3.6 LS1012ARDB
	3.6.1 Switch settings
	3.6.2 Updating target images

	3.7 i.MX6QSabreSD
	3.7.1 Switch settings for the i.MX6Q SabreSD
	3.7.2 Updating target images

	3.8 LS1028ARDB and LS1028ATSN
	3.8.1 Switch settings
	3.8.2 Interface naming
	3.8.2.1 Interface naming in U-Boot
	3.8.2.2 Interface naming in Linux
	3.8.2.3 Interface naming for LS1028ATSN

	3.8.3 Updating target images
	3.8.4 LCD controller and DisplayPort/eDP

	3.9 LX2160ARDB
	3.9.1 Switch settings
	3.9.2 Updating target images

	4 Industrial features
	4.1 NETCONF/YANG
	4.2 TSN
	4.3 Xenomai
	4.3.1 Xenomai running mode
	4.3.1.1 Running Xenomai Mercury
	4.3.1.2 Running Cobalt mode

	4.3.2 RTnet
	4.3.2.1 Hardware requirements
	4.3.2.2 Software requirements
	4.3.2.3 Verifying RTnet

	4.4 PREEMPT-RT
	4.4.1 System RT Latency Tests
	4.4.1.1 Running Cyclictest

	4.4.2 RT Application Development

	4.5 IEEE 1588
	4.5.1 Introduction
	4.5.2 PTP device types
	4.5.3 Linux PTP stack
	4.5.4 Quick start guide for setting up IEEE standard 1588 demonstration
	4.5.5 Known issues and limitations
	4.5.6 Long term test results for Linux PTP

	4.6 OP-TEE
	4.6.1 Introduction
	4.6.2 Deployment architecture
	4.6.3 DDR memory map
	4.6.4 Configuring OP-TEE on LS1021A-TSN platform
	4.6.5 Running OP-TEE on LS1021A-TSN platform
	4.6.5.1 Running secure boot
	4.6.5.2 Executing Op-tee Daemon
	4.6.5.3 Executing OP-Tee test cases

	4.7 SELinux
	4.7.1 Running SELinux demo
	4.7.1.1 Obtaining the image for SELinux
	4.7.1.2 Installing basic packages
	4.7.1.3 Basic setup
	4.7.1.4 Demo 1: local access control
	4.7.1.5 Demo 2: enabling remote access control

	5 IEEE 1588/802.1AS
	5.1 Introduction
	5.2 Device types
	5.3 Two types of time-aware systems in IEEE 802.1AS
	5.4 linuxptp stack
	5.5 Quick Start for IEEE 1588
	5.5.1 Ordinary clock verification
	5.5.2 Boundary clock verification
	5.5.3 Transparent clock verification

	5.6 Quick Start for IEEE 802.1AS
	5.6.1 Time-aware end station verification
	5.6.2 Time-aware bridge verification

	5.7 Known issues and limitations
	5.8 Long term test

	6 NETCONF/YANG
	6.1 Overview
	6.2 Netopeer2
	6.2.1 Overview
	6.2.2 Sysrepo
	6.2.3 Netopeer2 server
	6.2.4 Netopeer2 client
	6.2.5 Workflow in application practice

	6.3 Installing Netopeer2-cli on Ubuntu18.04
	6.4 Configuration
	6.4.1 Enabling NETCONF feature in OpenIL
	6.4.2 Netopeer2-server
	6.4.3 Netopeer2-cli
	6.4.3.1 Netopeer2 CLI commands
	6.4.3.2 Netopeer2 CLI datastore

	6.4.4 Sysrepod
	6.4.5 Sysrepocfg
	6.4.6 Sysrepoctl
	6.4.7 Operation examples
	6.4.8 Application scenarios

	6.5 Web UI demo
	6.6 Troubleshooting

	7 OPC UA
	7.1 OPC introduction
	7.2 The node model
	7.3 Node Namespaces
	7.4 Node classes
	7.5 Node graph and references
	7.6 Open62541
	7.7 Example of a server application: OPC SJA1105
	7.8 FreeOpcUa Client GUI

	8 TSN
	8.1 Using TSN features on LS1028ARDB
	8.1.1 Tsntool User Manual
	8.1.1.1 Getting the source code
	8.1.1.2 Tsn tool commands
	8.1.1.3 Tsntool commands and parameters
	8.1.1.4 Input tips
	8.1.1.5 Non-interactive mode

	8.1.2 Kernel configuration
	8.1.3 Basic TSN configuration examples on ENETC
	8.1.3.1 Linuxptp test
	8.1.3.2 Qbv test
	8.1.3.2.1 Basic gates closing
	8.1.3.2.2 Basetime test
	8.1.3.2.3 Qbv performance test
	8.1.3.2.4 Using taprio Qdisc Setup Qbv

	8.1.3.3 Qci test cases
	8.1.3.3.1 Test SFI No Streamhandle
	8.1.3.3.2 Testing null stream identify entry
	8.1.3.3.3 Testing source stream identify entry
	8.1.3.3.4 SGI stream gate list
	8.1.3.3.5 FMI test

	8.1.3.4 Qbu test
	8.1.3.5 Qav test
	8.1.3.5.1 Using tsntool
	8.1.3.5.2 Using CBS Qdisc Setup Qav

	8.1.4 Basic TSN configuration examples on the switch
	8.1.4.1 Switch configuration
	8.1.4.2 Linuxptp test
	8.1.4.3 Qbv test
	8.1.4.3.1 Closing basic gates
	8.1.4.3.2 Basetime test
	8.1.4.3.3 Qbv performance test

	8.1.4.4 Qbu test
	8.1.4.5 Qci test cases
	8.1.4.5.1 Stream identification
	8.1.4.5.2 Stream gate control
	8.1.4.5.3 SFI maxSDU test
	8.1.4.5.4 FMI test

	8.1.4.6 Qav test case
	8.1.4.7 Seamless redundancy test case
	8.1.4.7.1 Sequence Generator test
	8.1.4.7.2 Sequence Recover test

	8.1.4.8 TSN stream identification
	8.1.4.8.1 Stream identification based on PCP value of Vlan tag
	8.1.4.8.2 Based on DSCP of ToS tag
	8.1.4.8.3 Based on qci stream identification

	8.1.4.9 ACL test

	8.1.5 Netconf usage on LS1028ARDB

	8.2 Using TSN features on LS1021A-TSN board
	8.2.1 Topology
	8.2.2 SJA1105 Linux support
	8.2.3 Synchronized 802.1Qbv demo
	8.2.4 NETCONF usage

	9 4G-LTE Modem
	9.1 Introduction
	9.2 Hardware preparation
	9.3 Software preparation
	9.4 Testing 4G USB modem link to the internet

	10 OTA implementation
	10.1 Introduction
	10.2 Platform support for OTA demo
	10.3 Server requirements
	10.4 OTA test case

	11 EtherCAT
	11.1 Introduction
	11.2 IGH EtherCAT architecture
	11.3 EtherCAT protocol
	11.4 EtherCAT system integration and example
	11.4.1 Building kernel images for EtherCAT
	11.4.2 Command-line tool
	11.4.3 System integration
	11.4.4 Running a sample application

	12 nxp-servo
	12.1 CoE network
	12.2 Libnservo Architecture
	12.3 Xml Configuration
	12.3.1 Master Element
	12.3.1.1 Slave Element
	12.3.1.1.1 SyncManagers Element
	12.3.1.1.2 Sdo Element

	12.3.2 Axle Element

	12.4 Test
	12.4.1 Hardware Preparation
	12.4.2 Software Preparation
	12.4.3 CoE Network Detection
	12.4.4 Start Test

	13 FlexCAN
	13.1 Introduction
	13.1.1 CAN bus
	13.1.2 CANopen

	13.2 FlexCAN integration in OpenIL
	13.2.1 LS1021AIOT CAN resource allocation
	13.2.2 Introducing the function of CAN example code

	13.3 Running a CAN application
	13.3.1 Hardware preparation for LS1021-IoT
	13.3.2 Hardware preparation for LS1028ARDB
	13.3.3 Compiling the CANopen-app binary for the master node
	13.3.4 Running the CANopen application
	13.3.5 Running the Socketcan commands
	13.3.6 Testing CAN bus

	14 NFC click board
	14.1 Introduction
	14.2 PN7120 features
	14.3 Hardware preparation
	14.4 Software preparation
	14.5 Testing the NFC click board

	15 BEE Click Board
	15.1 Introduction
	15.2 Features
	15.3 Hardware preparation
	15.4 Software preparation
	15.5 Testing the BEE click board

	16 BLE click board
	16.1 Introduction
	16.2 Features
	16.3 Hardware preparation
	16.4 Software preparation
	16.5 Testing the BLE P click board

	17 QT
	17.1 Introduction
	17.2 Software settings and configuration
	17.3 Hardware setup
	17.4 Running the QT5 demo
	17.4.1 Environment setting
	17.4.2 Running the demos

	18 EdgeScale client
	18.1 What is EdgeScale
	18.2 Edgescale features
	18.3 Building EdgeScale client
	18.4 Procedure to start EdgeScale

	19 Revision history

