NXP Semiconductors Document identifier: OpenlLUG
User's Guide Rev. 1.9, 09/2020

Open Industrial User Guide

NXP Semiconductors

Contents
Chapter 1 INtrodUCtioN..........eeuuiiiiiii e e 8
1.1 Acronyms and abbreViationS..........o.uuuiiiiiiie e 8
1.2 Reference doCUMENTatioN............ooiii e 9
RGN oo 10 o =T o | PRSPPI 10
1.3.1 OPENIL Organization...........ooiiiiiiiiii ettt e e e e e ns 10
1.4 Supported NXP platforms and configurations..............ccccoiiiiiiiii e 12
1.4.1 Default compilation settings for NXP platforms...........ccooiiiiii e 13
Chapter 2 Getting started...........ooooiicee 15
P2 B C 1= 1 (] o @ o= o || PP PRP PP PRSP 15
2.2.0PENIL QUICK SEAIM.....coiiiiiiiee e e ea e e 15
2.2.1 HOSt SYStemM reqUITEMENTS.........eiiiiiiiiii et e e e et e e e s sneeeeeeen 15
2.2.2 Creating RAMDISK file SYSIEM.......uiiiiiiii e e 17
2.2.3 ResSiziNG SECON PAIIION......ccoiiiiiiiii ittt e e s e e e e enneeeee s 17
2.2.4 Customing Ubuntu fileSYStEM........coiiiiii e 19
2.2.5 BUilding the IMaQES.eeiiiiiiiiie et e e et e e et e e e e e 20
2.2.6 TroUDIESNOOTING.eeiie ettt e e et e e e b e e e e anbeeeee e 22
2.3 BOOtING the DOAI. ...t e e e e e e e e e e e e e e e e 23
D B S o= o [o ToTo) (1] o PR SPRP 24
2.3.2 QSPI/FIEXSPI DOOIUP. ...ttt ettt ettt ee et e et e e e ete e e saee e e sneeeesmeeeesnteeesneeeanneeeanneeeans 24
B B I 1Y, 1V (@ oToTo] (1 o R 25
2.3.4 Starting Up the DOAIG.........eeeiii e e 27
2.4 BasiC OPENIL OPEratiONS.cuiiiiiiiiiiit et e e e e e e e e e e e e e e e e e e 27
2.4.1 BUilding LINUX KEIMEL......neieiiiieiiiee ettt e e e e e s nneeeee s 29
B A = TUT1 o [T o T =7 o SR 30
Chapter 3 NXP OpenlL platforms.........ccccoiiiiiiriiiieccee e 32
1 20t I [1o Yo [T (o T o PP EPRP 32
BT I 1012 e S N PP 32
3.2.1 SWILCN SEHINGS. ..o it e e e 32
3.2.2 Updating target iMagEScoouueiiiiiiiiiiie ettt e e et e e e s anbe e e e 32
TR I s 1012 e AT PP PPPPPPPP 33
3.3.1 SWILCH SEHINGS. ..o e 33
3.3.2 Updating target iIMagEScoouuiiiiiiiiiiiie et e e st e e e e anbeeeee e 33
B S 012 7 Lo PP PPPPPRP 34
3.4.1 SWILCH SEHINGS ..o e 34
3.4.2 Updating target iMagESooouiiiiiiiiiiiiee et e et e e e e b e e 34
3.5 LS1043ARDB, LS1046ARDB and LST046AFRWYcoooiiiiiiiiiiieeieeeeeeeeeeeeeee e 35
3.5.1 SWILCH SEHINGS. ..coi i 35
3.5.2 Updating target iMagESocuueiiiiiiiiie et e et e e e ee e 35
3.8 LSTO0T2ARDB. ... 36
3.6.1 SWILCH SEHINGS. ..cei i et e e e 37
3.6.2 Updating target iMagEScooueeiiiiiiiieie et e e sb e e e s enr e eee e 37
3.7 .MXBQSADIESD......cceiiiiiiiiee ettt e e et e e e e e e e e e e e e e aaeeaan 38
3.7.1 Switch settings for the i.MX6Q SabreSD..........c.uuiiiiiiiiiie e 38
3.7.2 Updating target iMagesS.ccoiuiiiiii ittt e e ee e 38
3.8 LS1028ARDB and LST028ATSN......cco i, 39
3.8.1 SWILCH SEHINGS. ..o i e e e 39
3.8.2 INtErface NAMING......ci ittt e e e e et e e e e e ab et e e e e s nbe e e e e e ennbeeeeeeneee 39

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 2/237

NXP Semiconductors

Contents

3.8.3 Updating target iMages.oouiiiiii et e e s e e 43

3.8.4 LCD controller and DisplayPort/€DP............coouiiiiiiiee e 44

3.9 LX21B0ARDB/REVZ.cccoeeeiieeeeeeeeeeeeee ettt 45
3.9.1 SWILCN SEHINGS. ..o i e 45

3.9.2 Updating target iMagESooouiiiiiiiiiiiiie ettt e e st e e e s anbeeeeeeaae 45

SO LIMXBMPEVK ...ttt e e e e e e e e e e e e 46
3.10.1 Switch settings for the i.MXBMPEVK ... e 47
3.10.2 Updating target iMaAgESuiiiiiiiiiiie ettt e et e et e e e s sbee e e e e s anbeeeeeeaans 47
Chapter 4 Industrial features............ouuiceeiii e 48
4.1 DeterminiStic NEIWOTK.......cooi e e e e e e eeas 48
411 IEEE 1588/802.1AS.eeeeeieeee ettt ettt ettt e e et e e e at e e et e e e mte e e eneeeenneeeeeneeeeaneeeeanreeeennes 48

g S T USROS 48
=Y | I o = TP PPP PRSP 48
g e o Y i S 48
(=13 o] 4= | PSR 49

R B = = 1T 0 oY - | SRR PRT 49

4.3 INAUSEFIAl PrOtOCOIS.eeiiiiiee ittt e e e e e e e ee s 49
G TRy i =Y N LSS SUSRTRN 49

R T @ | 0 U 1SR 49

R TG B 1= @ SR 49

G B N SR 49

G TR T = OSSPSR 49

4.3.6 BEE/ZIGBEE.........co ittt ettt ettt e et e et e e ae e e e te e e e naeeaneeeeaneeeenes 50

G T A I I SRR 50
ST oW 41§ PP PURPP PP 50
Ry O L 8y SR 50

S | N o ¥ 50

4.5 Remote Management. ... 50
4.5.1 NETCONF/YANG......eeieitiie ettt ettt et e et e e st eeante e e e aeeeanteeeaasseeeneeeeanseeeanseeeanneeeanneeeas 50

B0 O IS 51

4.5.3 EAGESCAlE CHENL......ooiiieiiie ettt e e e ettt e e e e s bb e e e e e enbeeeeeean 51

G I 1T o] = PP SOPPPPRPPPR 51
G TRy €1 SRS 51

G T =T (o] o RPN 51

TR X OSSR 52
Chapter 5 IEEE 1588/802.1AS........ ittt s 53
ST I 1o Yo [T (oo ORI 53
5.2 IEEE 1588 dEVICE LYPES... ettt et e e e e e e e e e e 53
5.3 IEEE 802.1AS time-aware SYStEMS.uuiiiiiiiiiiiiieeee et e e 54
5.4 TINUXPEP STACK. .. .ceiiiiiiiiie i 54
5.5 QUICK Start for IEEE 1588........ccooiiiiiiiiiiee et e e 54
5.5.1 Ordinary ClOCK VErIfICAtION..........oiiiiiiiii et e e e 55

5.5.2 Boundary CloCk VErifiCatioN............cuuiiiiiiiie e 55

5.5.3 Transparent CloCK VErifiCatioN............oooiiiiiii e 55

5.6 Quick Start for IEEE 802.1AS.......oo ot a s 56
5.6.1 Time-aware end station verifiCation............cccooiiii e 56

5.6.2 Time-aware bridge VerifiCation.............cooo e 57

5.7 Boundary clock jpbod mode on LST028ATSN.....couiiiiiiiiiiiieeee e 57
TSI o] o I =T 4 1 (=) SRR PPRR 59
5.8.1 linuxptp basic SYNNronization..............oieii e 59

5.8.2 Boundary clock jbod mode on LSTO28ATSN.......coeiiiiiiiiiiiiee e 61

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 3/237

NXP Semiconductors

Contents

5.9 KNown issues and lIMitatioNS..........oouueiiiiiii e e e e e e e e e e eaean 64
Chapter 6 Time Sensitive Network (TSN).......ccoiueeeiiiiiiineee e 65
6.1 TSN hardware Capability...........coouiiiiiii e e 65
6.2 TSN CONFIGUIALION ... e e e e e e s e e e e e e e e nnnneees 65
6.2.1 Using Linux traffic CONrol (1C).......coou i e 66

6.2.2 USING ISNE00L. ... ettt e e e et e e e e e e e nre e e e 67

6.2.3 Remote configuration using NETCONF/YANG.........cuiiiiiiiiie e 67

6.2.4 Remote configuration using Web Ul.............ooiiiii e 68

6.3 Verifying TSN features on LST1028ARDB b0ard...........ccuuuiiiiiiiiiiiiiiiiieeee e 70
6.3.1 TSNOOI USEr ManUAL..........cooiiiiiiiii e et e e e st e ee e e 70

6.3.2 TSN configuration 0N ENETC.........ooiiii et 80

6.3.3 TSN configuration on FeliX SWItCh.............ooiiiii e 89

6.3.4 Q-in-Q configuration on FeliX SWItCN...........ooiiiiiiiii e 109

6.4 Verifying TSN features on LST1021A-TSN board..........cccoooiiiiiiiiiiiieiiiiieeeee e 111
T I o o] o T |V PSPPSR 111

B SN LNy e L0 L T IR g TU =TT o o o S 112

6.4.3 Synchronized 802.1TQDV AEMIO........cooiiiiiiie e 115

6.5 Verifying TSN features on i.MX8MP bOard............ccuuuiiiiiiiiiiie e 120
6.5.1 TSt @NVIFONMENT. ...t e e et e e e st e e e s snreeeeeeans 120

6.5.2 Clock SYNCRIONIZALION. e e e e 121

ST T0C T o USROS 122

ST O o T OSSPSR 123

SR T T O - 1 USROS 123
Chapter 7 Preempt-RT.......cco e e s 125
7.1 System RT LatenCy TeSES....eiiiiiiiiiiiiii e e e 125
7.1.1 RUNNING CYCHCIEST. ...t e et e e s snreeee e 125

7.2 RT Application DevelOpMENt.........cooiiiiiiiiiiiiee e e e 125
Chapter 8 XenOmMai........uuuuuiiiiiieiiiiiceieiieeeisre e e e e 127
8.1 Xenomai MUNNING MOGTE.ueiiiiiiiiiiittei e e ettt e e e e e e st e e e e e e e s asbb e e e e e e e e s asnnsereeeeaeeaaanns 127
8.1.1 RUNNING XENOMAi IMEBICUNYttt s e e e nnnneeeas 127

8.1.2 RUNNING CODAIt MOTE.....coiiiiiiiiiii ettt e et e e e s s nreeee e 127

S 02 o I 1= PRSP PPRPPR 129
8.2.1 Hardware reqUINEMENTS.cooiiiiiee ettt ettt ettt e e sttt e e e s nee e e e s ennn e e e e s annneeeas 129

8.2.2 SOMWAre reQUINEIMENTS.eii ittt e ettt e e et e e e e e nneeee s 129

8.2.3 Verifying RTNEL.....co ottt e e et e e e st e e e s snreeeeeeans 132
Chapter 9 EtherCATcoooii ettt eene e e e e s e e e ennnsann 133
S It I [1o Yo [T (oo PRSPPI 133
9.2 IGH EtherCAT arChite@CIUE.........eeiiiiiiiie e 133
S IR (g 1T O N I o] o] (o oo) TP 134
9.4 EtherCAT system integration and example ... 135
9.4.1 Building kernel images for EtherCAT e 135

9.4.2 CommaNd-lNE T00L.........eeiiiiee et 136

9.4.3 SyStem iNTEGratioN..........oii i e e e s e e 137

9.4.4 Running a sample appliCation.............eeiiiiiiiiee et 139

9.5 NXP SEIVO STACK.eeeeiieeiiiiiee ettt e e e ettt e e e e e e e st e e e e e e e e e nnaneneeeaeas 142
ST I O] = =Y Ao Ty PR 142

9.5.2 LibNSErvo ArChiItECIUIE........ooiiiiii e e e e sneeee e 143

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 4237

NXP Semiconductors

Contents

9.5.3 XMl CONFIGUIALION.oiiiiiiiii ettt e e s e e s ane e e e s annneeeas 144

S R =T SRR 148

9.6 EAQESCaAle ClIENT.....co it e e e e 151
Chapter 10 OPC UAottt e e e ennn e s e e e e s e e e e ennnsanns 1562
10.1 OPC iNtrOQUCLION.eeiiiiiiiiiieeeee ettt eeeeeeeeeeeeeeeeeeeeaeeeeeaeeaeeeeees 152

10.2 The NOAE MOAEL........cooviiiiiieiiee e, 152

10.3 NOUE NAMESPACES.....eeeeiieieiiiiiite ettt e e e e ettt e e e e e e s bt e e e e e e e s e b aeeeeaaeeeeanneeees 153

T0.4 NOAE ClaSSES......ccc e, 154

10.5 Node graph and referEnCES.........ooi i e e 154

LIRS0 01T 01722 7 155
Chapter 11 FIEXCAN.........cooeiiee e e e e e e 157
L S 0T 0T 1T 157

L P Tt T 7 N o T R 157

L 7 @7 Y (o] o 1Y o T SRR ER 158

11.2 FlexCAN integration in OPeNIL............uuiiiiiiiiiiie e 160

11.2.1 LS1021AIOT CAN resource alloCation.............coueiurieieiiiiee et 160

11.2.2 Introducing the function of CAN example COde.........cueiiiiiiiiiiiiiiiiee e 162

11.3 Running @ CAN a@ppliCatioN........cccoiiiiiiiiiiieee e 163

11.3.1 Hardware preparation for LST021-10Tcoiiiiiiiiiiiee e 163

11.3.2 Hardware preparation for LST028ARDB...........c..oiiiiiiiiie e 164

11.3.3 Compiling the CANopen-app binary for the master node............cocccceiiiiii e, 165

11.3.4 Running the CANOpen appliCation.............ocuuiiiiiii e 166

11.3.5 Running the Socketcan CoOmMMAaNdS.............ooiiiiiiiiii e 169

11.3.6 TESHNG CAN DUS....co ittt e e e e e e et e e e e e e e e e e e e e sanenbeeaeeeeaaaeeeeesannnnnnes 169

Chapter 12 NFC....... i e e e e e e e 171
P20 B 1 o T T2 110 o T 171

122 PNT7120 fEALUIES....coieeeiieeeeee e 171

12.3 Hardware preparation.......ot e e e e e e e e e e eeaeeeas 171

12.4 SOftWare Preparation........ ... it e e e e e e s e e e e e e e e 171

12.5 Testing the NFC CliCk DOArd.............oeiiiiiiiiii e 172

L0 gF=T o] =Y g G = PP 174
RS 700 I o T T2 1T o T 174

G T2 ==Y U = 174

13.3 Hardware preparation......... ...t e e e e e e e e e e e e as 174

13.4 SOftWare Preparation........ ... i e e e 175

13.5 Testing the BLE P ClICK DOAId.........coiiiiiiiiiiiieeeee et 176
Chapter 14 BEE.........ooo e e 179
g o1 (Yo [Uo7 T o T 179

A oY= | (U] YT 179

14.3 Hardware preparation.ottt e e e e e e e e e e e e eeeaee s 179

14.4 SOftWAre Preparation........ ... i e e e e e e e e e s e e e e e e e e e aanes 180

14.5 Testing the BEE ClICK DO@IT.........cooiiiiiiiiiiiiiee et 181
Chapter 15 4G-LTE Modem e e 183

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 5/237

NXP Semiconductors

Contents

(R0 I (g1 (oo 0T i o PP PRRI 183
15.2 Hardware preparation..............o it e e et e e e e e e e e aeeas 183
15.3 SOftWare preparation......... ... 183
15.4 Testing 4G USB modem link to the internet............coooi e 183
Chapter 16 OP-TEE............oo e 185
L0 [0 (o T 0T o o PRSI 185
16.2 Deployment arChiteCtUre.............eeiiiieiiee e 185
16.3 DDR MEIMOIY MIP .ttt iiiiiitiiie ettt e e e e et et e e e e e s st e e e e e e e e e e bbb e e e e e e e e e e aannnneeeeeaaeeas 186
16.4 Configuring OP-TEE on LS1021A-TSN platform............ooooeiiiiiieee e 187
16.5 Running OP-TEE on LS1021A-TSN platform.........oooiiiiiiii e 187
16.5.1 RUNNING SECUIE DOOL..... ..o e e 187
16.5.2 EXecuting Op-t€€ DaGMON......ccoiiiiiiii ettt e et e e e e aareeeeeeaes 188
16.5.3 EXECULING OP-TEE tESt CASES.....ueiiiiiiiiiiii et 188
Chapter 17 SELINUX.........cooiiiiiiicciesiies e e e e 189
17.1 RUNNING SELINUX AEIMO......uiiiiiiiie ittt ettt e e e e e e e e eaaeeas 189
17.1.1 Obtaining the image fOr SELINUX........coiiiiiiiiiiiiiee et 189
17.1.2 Installing basiC PACKAGES.ceei it et e e 189
(ARG I == T[T (1] o T PSRRI 191
17.1.4 Demo 1: 10Cal aCCESS CONIIOL........eeiiiiiiiiiie it 193
17.1.5 Demo 2: enabling remote acCess CONMIOL...........eeiiiiiiiiiiiiiiee e 197
Chapter 18 NETCONF/YANG...... .. e 200
RS T O =T = TP PRPRP 200
RS T2 1= (o o= =Y PP PRSI 200
ST T O 1Y S 200

RS ISV =T oo J PP 201
18.2.3 NEIOPEEIZ SEIVET ...ttt et e e e ettt e e e et e e e s nnbe e e e e annneeeas 201
18.2.4 NEtOPEEI2 CHENL......ceiiiieeii et e e e st e e e e e e e e e neeas 201
18.2.5 Workflow in application PracliCe...........oouuiiiiiiiiiiie e 202

18.3 Installing Netopeer2-cli on Ubuntu18.04.........oooiiiiiiiiiee e 202
18.4 CONFIGUIALION......oiiiiiiie et e e e e e e e e e e e e e a e e e e e e e e aannes 203
18.4.1 Enabling NETCONF feature in OpeniL......... .o 203
18.4.2 NEIOPEEIZ2-SEIVET.......eeiiiiiieie ettt ettt e e ettt e e e e e bttt e e e e anb e e e e e anbeeeeeeneee 204
18.4.3 NETOPEEIZ2-Clieeeeiiiieiiiie ettt e ettt e e e e ettt e e e e aabe e e e e e anbeeeeeeans 204
RS B3] =T oo Lo PP PP 207
RS R RISV] (=T oo Lo o PR OTPURN 208
RS R SRR] (=T oo Lo | PRSP 208
18.4.7 OPeration EXAMPIES.ueiiiei ittt e e e e e e e e e e e e e neeas 209
18.4.8 APPlICAtioN SCENAIIOS. ... it e e e e e e nbe e e e e e neee 211

18.5 WED UL BMIO....i ittt e e e ettt e e e e e e st e e e e e e e e e nnnneees 213
18.6 TroUbIESNOOTING.ceiiiiiiie e e e e e e e e e e eeaeeas 215
Chapter 19 OTA implementation.............coovueeiiiiiiiiin e 217
RS IR (g1 (o T 0T o o TR PRRI 217
19.2 Platform support for OTA AEMO.......couii i 217
19.3 SeIVEr FEQUITEMENTS.eiiiii ittt et e e e e e et e e e e e e e e s e e e e e e e e e e e nnneeees 218
RS R O I (=] 7= LT PP PRRI 219

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 6/237

NXP Semiconductors

Contents

Chapter 20 EdgeScale client.............cooiiiiiieeiiiii e 220
20.1 What IS EAQESCAIE.eueiiiiiiiiieee et e e e e e e e e e e e e e aanes 220

20.2 EAQESCAlE fEATUMES. ...t e e e 220

20.3 Building EAGeScale ClENt............ooiiiiiiiee e 220

20.4 Procedure to start EAQEeSCale..........cooiiiiiiiiiiiii e 220
Chapter 21 Vivante GPU..........ccoiiiiiiecciiisin e e 222
(07 gF=T o] =) a2 (= (o] o T 226
Chapter 23 QT ... e 230
b0 Tt I [01 1o T[0T 1o o T PP PPRR 230

23.2 Software settings and configuration.............ccooiiiiii 230

23.3 HardWare SEIUPcoiiiiiiiiiie ettt e e e e e e et e e e e e e e e b e e e e e e e e e e aane 230

23.4 RUNNING the QTS AEMO0.....cciiiiiiiiiee et e e e e e e e e e e e e e e annes 231

23.4.1 EnvironmMent SEHING........eiiiiiiii e 231

23.4.2 RUNNING the GEMIOS....... et e e e e e e e s 231

Chapter 24 ReVvision NistOry............ccciiiiiiiii e e 234

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 71237

NXP Semiconductors

Chapter 1
Introduction

This document provides a complete description of Open Industrial Linux (OpenlL) features, getting started on OpenlL using
NXP OpenlL platforms, and the various software settings involved. It describes in detail the industrial features, which include
NETCONF/YANG, TSN, Xenomai, Preempt-RT, IEEE 1588, OP-TEE, and SELinux. It also includes detailed steps for running the
demos such as Selinux demo, 1-board TSN Demo, 3-board TSN demo, 4G-LTE demo, OTA implementation, BLE Click Board

and BEE Click Board. It also provides a complete description of the OpenlL compilation steps.

1.1 Acronyms and abbreviations

The following table lists the acronyms used in this document.

Table 1. Acronyms and abbreviations

Term Description

BC Boundary clock

BLE Bluetooth low energy

BMC Best master clock

CA Client application

CAN Controller area network

DEI Drop eligibility indication

DP Display port

EtherCAT Ethernet for control automation technology
FMan Frame manager

GPU General Proccesor Unit

ICMP Internet control message protocol

IEEE Institute of electrical and electronics engineers
IETF Internet engineering task force

IPC Inter process communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

NFC Near field communication

NMT Network management

ocC Ordinary clock

OpenlL Open industry Linux

OPC Open platform communications

OP-TEE Open portable trusted execution environment

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

8/237

NXP Semiconductors

Table 1. Acronyms and abbreviations (continued)

Introduction

Term Description

oS Operating system

OTA Over-the-air

OTPMK One-time programmable master key
PCP Priority code point

PDO Process data object

PHC PTP hardware clock

PIT Packet inter-arrival times

PLC programmable logic controller

PTP Precision time protocol

QSPI Queued serial peripheral interface
RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RTT Round-trip times

SABRE Smart application blueprint for rapid engineering
SDO Service data object

SPI Serial periphery interface

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TCP Transmission control protocol

TEE Trusted execution environment
TFTP Trivial file transfer protocol

TSN Time sensitive networking

TZASC Trust zone address space controller
UDP User datagram protocol

VLAN Virtual local area network

1.2 Reference documentation

1. Refer to the following documents for detailed instructions on booting up the NXP hardware boards supported by Open IL:

* LS1012ARDB Getting Started Guide.
» LS1021AloT Getting Started Guide.

* LS1021ATSN Getting Started Guide
* LS1021ATWR Getting Started Guide

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

9/237

https://www.nxp.com/webapp/Download?colCode=LS1012ARDBGSG&Parent_nodeId=1462294874819702554554&Parent_pageType=product&Parent_nodeId=1462294874819702554554&Parent_pageType=product
https://www.nxp.com/webapp/Download?colCode=LS1021A-IOTGS&location=null&fsrch=1&sr=9&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/fact-sheet/LS1021ATSNRDA4FS.pdf
https://www.nxp.com/webapp/Download?colCode=TWR-LS1021AGS&location=null

NXP Semiconductors

Introduction

LS1043ARDB Getting Started Guide.
LS1046ARDB Getting Started Guide.
LS1046AFRWY Getting Started Guide

* i.MX6 SabreSD Board Quick Start Guide

« LS1028ARDB Quick Start Guide

+ LX2160A/LX2160A-Rev2 RDB Quick Start Guide

2. For booting up LS1021A-TSN board, refer to the Section Booting the board of this document.

3. For the complete description of the industrial loT baremetal framework, refer to the latest available version of Industrial loT

Baremetal Framework Developer Guide.

1.3 About OpenlL

The OpenlL project (“Open Industry Linux”) is designed for embedded industrial usage. It is an integrated Linux distribution
for industry.

OpenlL is built on buildroot project and provides packages for the industrial market.

Focus on industry: OpenlL provides key components for industry usage, for example, Time sensitive network (TSN), Netconf,
IEEE 1588, and Xenomai or Preempt-RT.

Ease of use: OpenlL is a tool that simplifies and automates the process of building a complete Linux system for an embedded
system, using cross-compilation. It follows the buildroot project rules. For more buildroot information, refer to the page:
https://buildroot.org/

Extensibility: OpenlL provides capabilities of industry usage and standardized Linux system packages. And user can also
easily replicate the same setup on customized packages and devices.

Lightweight: OpenlL only includes necessary Linux packages and industry packages in order to make the system more
lightweight to adapt to industry usage. Users can customize the package via a configuration file.

Open Source: OpenlL is an open project. Anyone can participate in the OpenlL development through the Open
Source community.

1.3.1 OpenilL Organization

OpenlL follows the Buildroot directory structure depicted in the following figure. The second and third levels of the directory are
generated during compilation.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 10/237

https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&location=null&fsrch=1&sr=10&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&location=null&fsrch=1&sr=3&pageNum=2&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/quick-reference-guide/FRWY-LS1046AGSG.pdf
https://www.nxp.com/docs/en/user-guide/SABRESDB_IMX6_QSG.pdf
https://www.nxp.com/webapp/Download?colCode=LS1028ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=LX2160ARDBGSG&location=null
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://buildroot.org/

NXP Semiconductors

Figure 1. OpenlL structure

Introduction
OpenlL
Root Dir
| arch | | board ‘ ‘ boot | ‘ config ‘ | docs | ‘ fs ‘ | linux ‘ ‘ package ‘ ‘ support | ‘ system | toolchain
| build ‘ | host ‘ | image ‘ ‘ stagin ‘ | target ‘

Table 2. Source directories

Directory name

Description

arch Files defining the architecture variants (processor type, ABI, floating point, etc.)
toolchain Packages for generating or using tool-chains

system Contains the rootfs skeleton and options for system-wide features

linux The linux kernel package.

package All the user space packages (1800+)

fs Logic to generate file system images in various formats

boot Boot-loader packages

configs Default configuration files for various platforms

board Board-specific files (kernel configurations, patches, image flashing scripts, etc.)
support Miscellaneous utilities (kconfig code, libtool patches, download helpers, and more)
docs Documentation

Table 3. Build directories

Directory name

Description

dl

Path where all the source tarballs are downloaded

output

Global output directory

output/build

Path where all source tarballs are extracted and the build of each package takes place.

output/host

Contains both the tools built for the host and the sysroot of the toolchain

output/staging

A symbolic link to the sysroot, that is, to host/<tuple>/sysroot/ for convenience

output/target

The target Linux root filesystem, used to generate the final root filesystem images

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

117237

NXP Semiconductors

Introduction

Table 3. Build directories (continued)

Directory name Description

output/images Contains all the final images: kernel, bootloader, root file system, and so on

1.4 Supported NXP platforms and configurations

The following table lists the NXP platforms and configurations supported by OpenlL.

Table 4. Supported NXP platforms

Platform Architecture | Configuration file in OpenlL Boot
LS1021ATSN (default) ARM v7 configs/nxp_Is1021atsn_defconfig SD
LS1021ATSN (OP-TEE-SB) ARM v7 configs/nxp_Is1021atsn_optee-sb_defconfig SD
LS1021ATSN (Ubuntu) ARM v7 configs/nxp_Is1021atsn_ubuntu_defconfig SD
LS1021AIOT (default) ARM v7 configs/nxp_Is1021aiot_defconfig SD
LS1021AIOT (OP-TEE) ARM v7 configs/nxp_ls1021aiot_optee_defconfig SD
LS1021AIOT (Baremetal) ARM v7 configs/nxp_Is1021aiot_baremetal_defconfig SD
LS1021AIOT (Ubuntu) ARM v7 configs/nxp_ls1021aiot_ubuntu_defconfig SD
LS1021ATWR (default, QSPI) ARM v7 configs/nxp_Is1021atwr_defconfig SD
LS1021ATWR (IFC) ARM v7 configs/nxp_ls1021atwr_sdboot_ifc_defconfig SD
LS1043ARDB (64bit, default) ARM v8 configs/nxp_Ils1043ardb-64b_defconfig SD
LS1043ARDB (Baremetal) ARM v8 configs/nxp_Is1043ardb_baremetal-64b_defconfig SD
LS1043ARDB (Ubuntu) ARM v8 configs/nxp_Is1043ardb-64b_ubuntu_defconfig SD
LS1046ARDB (64bit, default) ARM v8 configs/nxp_Is1046ardb-64b_defconfig SD
LS1046ARDB (EMMC) ARM v8 configs/nxp_Ils1046ardb-64b-emmcboot_defconfig EMMC
LS1046ARDB (QSPI) ARM v8 configs/nxp_Ils1046ardb-64b_qgspi_defconfig QSPI
LS1046ARDB (QSPI-SB) ARM v8 configs/nxp_Is1046ardb-64b_qgspi-sb_defconfig QSPI
LS1046ARDB (Baremetal) ARM v8 configs/nxp_Is1046ardb_baremetal-64b_defconfig SD
LS1046ARDB (Ubuntu) ARM v8 configs/nxp_ls1046ardb-64b_ubuntu_defconfig SD
LS1046AFRWY (64bit, default) | ARM v8 configs/nxp_Is1046afrwy-64b_defconfig SD
LS1046AFRWY (QSPI) ARM v8 configs/nxp_Is1046afrwy-64b_qgspi_defconfig QSPI
LS1046AFRWY (Ubuntu) ARM v8 configs/nxp_ls1046afrwy-64b_ubuntu_defconfig SD
LS1012ARDB (64bit) ARM v8 configs/nxp_Is1012ardb-64b_defconfig QSPI
i.MX6Q SabreSD (default) ARM v7 configs/imx6q-sabresd_defconfig SD
i.MX6Q SabreSD (Baremetal) ARM v7 configs/imx6q-sabresd_baremetal_defconfig SD
i.MX6Q SabreSD (Ubuntu) ARM v7 configs/imx6q-sabresd_ubuntu_defconfig SD
i.MX8MP EVK (64bit, default) ARM v8 configs/imx8mpevk_defconfig SD
i.MX8MP EVK (Ubuntu) ARM v8 configs/imx8mpevk_ubuntu_defconfig SD

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

12/237

NXP Semiconductors

Introduction
Table 4. Supported NXP platforms (continued)
Platform Architecture | Configuration file in OpenlL Boot
LS1028ARDB (64bit, default) ARM v8 configs/nxp_Is1028ardb-64b_defconfig SD
LS1028ARDB (EMMC) ARM v8 configs/nxp_Is1028ardb-64b-emmc_defconfig EMMC
LS1028ARDB (XSPI) ARM v8 configs/nxp_Is1028ardb-64b-xspi_defconfig XSPI
LS1028ARDB (Baremetal) ARM v8 configs/nxp_Is1028ardb_baremetal-64b_defconfig SD
LS1028ARDB (Ubuntu) ARM v8 configs/nxp_ls1028ardb-64b_ubuntu_defconfig SD
LS1028ATSN(64bit, default) ARM v8 configs/fii_ls1028atsn-64b_defconfig SD
LS1028ATSN(Ubuntu) ARM v8 configs/fii_Is1028atsn-64b_ubuntu_defconfig SD
LX2160ARDB (64bit, default) ARM v8 configs/nxp_Ix2160ardb-64b_defconfig SD
LX2160ARDB (XSPI) ARM v8 configs/nxp_Ix2160ardb-64b-xspi_defconfig XSPI
LX2160ARDB (Baremetal) ARM v8 configs/nxp_Ix2160ardb_baremetal-64b_defconfig SD
LX2160ARDB (Ubuntu) ARM v8 configs/nxp_Ix2160ardb-64b_ubuntu_defconfig SD
LX2160A Rev2 (64bit, default) ARM v8 configs/nxp_Ix2160ardb_rev2-64b_defconfig SD
LX2160A Rev2 (XSPI) ARM v8 configs/nxp_Ix2160ardb_rev2-64b-xspi_defconfig XSPI
LX2160A Rev2 (Baremetal) ARM v8 configs/nxp_Ix2160ardb_rev2_baremetal-64b_defconfig SD
LX2160A Rev2 (Ubuntu) ARM v8 configs/nxp_Ix2160ardb_rev2-64b_ubuntu_defconfig SD
1.4.1 Default compilation settings for NXP platforms
The following table provides the default compilation settings for each OpenlL NXP platform.
Table 5. Default compilation settings
Platform Toolchain libc Init system Filesystem
LS1021ATSN gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1021ATSN (OP-TEE) gcc 9.20 glibc 2.31 BusyBox OpenlL default
LS1021ATSN (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm
LS1021AI0T gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1021AIOT (OP-TEE) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1021AIOT (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm
LS1021ATWR gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1043ARDB (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1043ARDB (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64
LS1046ARDB (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1046ARB (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64
LS1046AFRWY (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default
LS1046AFRWY (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64
Table continues on the next page...
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 13/237

NXP Semiconductors

Introduction

Table 5. Default compilation settings (continued)

Platform Toolchain libc Init system Filesystem

LS1012ARDB (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default

i.MX6Q SabreSD gcc 9.2.0 glibc 2.31 BusyBox OpenlL default

i.MX6Q SabreSD (Ubuntu) gcc 7.5.0 glibc 2.25 Systemd ubuntu-base-18.04.4-arm

i.MX8MP EVK (64bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default

i.MX8MP EVK (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64

LS1028ARDB (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default

LS1028ARDB (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64

LS1028ATSN (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenliL default

LS1028ATSN (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64

LX2160ARDB (64-bit) gcc 9.2.0 glibc 2.31 BusyBox OpenlL default

LX2160ARDB (Ubuntu) gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64

LX2160A Rev2 RDB (64bit) | gcc 9.2.0 glibc 2.31 BusyBox OpenlL-default

LX2160A Rev2 RDB (Ubuntu) | gcc 9.2.0 glibc 2.31 Systemd ubuntu-base-18.04.4-arm64

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 14 /237

NXP Semiconductors

Chapter 2
Getting started

After reading this section, user should be able to get the OpenlL source code, build and program the NXP platform images, and
run the OpenlL system on the supported NXP platforms.

2.1 Getting OpenlL

OpenliL releases are available every a few months. The Release Number follows the format 'YYYYMM', for example, 201708.
Release tarballs are available at: https://github.com/openil/openil.

To follow development, make a clone of the Git repository. Use the below command:

S git clone https://github.com/openil/openil.git

$ cd openil

checkout to the 2020.09 v1.9 release

$ git checkout OpenIL-v1.9-202009 -b OpenIL-v1.9-202009

2.2 OpenlL quick start
The steps below help the user to build the NXP platform images with OpenlL quickly. Ensure to follow the important notes provided
in the following section.
2.2.1 Host system requirements
OpenlL is designed to build in Linux systems. The following host environments have been verified to build the OpenlL.
» Ubuntu 20.04
» Ubuntu 18.04
» Ubuntu 16.04

While OpenlL itself builds most host packages it needs for the compilation, certain standard Linux utilities are expected to be
already installed on the host system. The following tables provide an overview of the mandatory and optional packages.

User also can run following script to make sure all packages required have been installed into HOST machine.
$ cd openil

Run below command to check and install these packages required automatically.
$./env_setup.sh

NOTE
Package names listed in the following tables might vary between distributions.

Table 6. Host system mandatory packages

Mandatory packages Remarks

which

sed

make Version 3.81 or later

binutils

build-essential Only for Debian based systems

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 15/237

https://github.com/openil/openil

NXP Semiconductors

Getting started

Table 6. Host system mandatory packages (continued)

Mandatory packages Remarks

gcc Version 2.95 or later

g++ Version 2.95 or later

bash

patch

gzip
bzip2

perl Version 5.8.7 or later

tar

cpio

python Version 2.6 or later

unzip

rsync

file Must be in /usr/bin/file

bc

wget

autoconf, dh-autoreconf

openssl, libssl-dev

libmagickwand-dev
(Debian, Ubuntu)

imageMagick-devel (CentOS)

autogen autoconf libtool

pkg-config

python3-pyelftools

python-pyelftools

python3-pycryptodome

python-pycryptodome

binfmt-support used when building ubuntu-rootfs
gemu-system-common used when building ubuntu-rootfs
gemu-user-static used when building ubuntu-rootfs
debootstrap used when building ubuntu-rootfs

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 16 /237

NXP Semiconductors

Getting started

Table 7. Host system optional packages

Optional packages Remarks

ncurses5 To use the menuconfig interface

qt4 To use the xconfig interface

glib2, gtk2 and glade2 To use the gconfig interface

bazaar Source fetching tools.

cvs If user enable packages using any of these methods, user need to install the corresponding tool
git on the host system

mercurial

scp

javac compiler Java-related packages, if the Java Classpath needs to be built for the target system
jar tool

asciidoc Documentation generation tools

w3m

python with the

argparse module

dblatex

graphviz To use graph-depends and <pkg>-graph-depends

python-matplotlib To use graph-build

2.2.2 Creating RAMDISK file system
OpenlL support to generate RAMDISK file system.

+ Create Ramdisk root filesystem by using the make menuconfig command.

Filesystem images --->
[*] cpio the root filesystem (for use as an initial RAM filesystem)
=] Create U-Boot image of the root filesystem

This configuration will generate Ramdisk root filesystem based on CPIO, some files created: rootfs.cpio.uboot,
rootfs.cpio.gz, rootfs.cpio.

2.2.3 Resizing second partition
Resizing the second partition, which is root filesystem.

+ Specify partition size of the storage for the filesystem by using the make menuconfig command.

System configuration --->
(3G) Partition size of the storage for the rootfs
[*] Install rootfs resize service

This configuration specifies the size of the storage device partition for the building rootfs and currently used by NXP platforms
and SD card device. The default size is 3GB, user can set the size of the partition with 512M, 2G or other values, the target
system can get the specific size of partition space for the using filesystem.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 17 1237

NXP Semiconductors

Getting started

» Another way to modify the space size of second partition: using tool "fdisk" to resize the partition on HOST machine, below

are the example steps.

First flash sdcard.img to SD card on host machine wiht dd command
~$ sudo dd if=./sdcard.img of=/dev/sdc

Then list the partitions
~$ sudo fdisk -1 /dev/sdc

Disk /dev/sdc: 7.4 GiB, 7948206080 bytes, 15523840 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical)

: 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos
Disk identifier: 0x00000000

Device Boot Start End Sectors Size Id Type

/dev/sdcl * 131072 655359
/dev/sdc2 655360 1703935

Notice: we need this start sectors

Then, Re-create the second partition and expand to full SD capability

~$ sudo fdisk /dev/sdc

Welcome to fdisk (util-linux 2

524288 256M c W95 FAT32 (LBA)
1048576 512M 83 Linux

o3Lod) o

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): d
Partition number (1,2, default

Partition 2 has been deleted.

Command (m for help): n
Partition type

2):

o) primary (1 primary, O extended, 3 free)

e extended (container for
Select (default p):

Using default response p.
Partition number (2-4, default

logical partitions)

2):

First sector (2048-15523839, default 2048): 655360

Last sector, +sectors or +size{K,M,G,T,P} (655360-15523839, default 15523839):

Created a new partition 2 of type 'Linux' and of size 7.1 GiB.

Partition #2 contains a ext4 signature.

Do you want to remove the signature? [Y]es/[N]o: n

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Finally, check the second partiton and resize to full SD capability

~$ sudo fsck.ext4 /dev/sdc2
e2fsck 1.44.1 (24-Mar-2018)

/dev/sdc2: clean, 3493/32768 files, 26617/131072 blocks

~$ sudo resize2fs /dev/sdc2
resize2fs 1.44.1 (24-Mar-2018)

Open Industrial User Guide, Rev. 1.9, 09/2020

"655360" of second partition when create new partition.#

User's Guide

18 /237

NXP Semiconductors

Resizing the filesystem on /dev/sdc2 to 1858560 (4k) blocks.
The filesystem on /dev/sdc2 is now 1858560 (4k) blocks long.

~$ sudo fdisk -1 /dev/sdc

Disk /dev/sdc: 7.4 GiB, 7948206080 bytes, 15523840 sectors

Units: sectors of 1 * 512 =

512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal) :
Disklabel type: dos
Disk identifier: 0x00000000

512 bytes / 512 bytes

Device Boot Start End Sectors Size Id Type
/dev/sdcl * 131072 655359 524288 256M c W95 FAT32 (LBA)
/dev/sdc2 655360 15523839 14868480 7.1G 83 Linux

2.2.4 Customing Ubuntu filesystem
OpenlL support custom ubuntu as target ROOT file system.

+ Customing Ubuntu root filesystem

Getting started

Users can download OpenlL and build the target system with an Ubuntu filesystem. The specific filesystem can be set
conveniently by using the make menuconfig command (Notice: "sudo" permission is required when building ubuntu root

file system).
System configuration --->
Root FS skeleton (custom target skeleton) --->
Custom skeleton via network --->

Currently, there are ten NXP platforms that can support Ubuntu filesystem:

configs/nxp 1s1043ardb-64b ubuntu defconfig
configs/nxp 1s1043ardb-64b ubuntu full defconfig
configs/nxp 1sl046ardb-64b ubuntu defconfig
configs/nxp_lsl046ardb-64b_ubuntu_full defconfig
configs/nxp lsl046afrwy-64b ubuntu defconfig
configs/nxp_lsl046afrwy-64b_ubuntu full defconfig
configs/fii_1s1028atsn-64b_ubuntu_defconfig
configs/fii_ 1s1028atsn-64b_ubuntu_ full defconfig
configs/nxp_1s1028ardb-64b_ubuntu_defconfig
configs/nxp_1s1028ardb-64b_ubuntu_full defconfig
configs/nxp_lsl02laiot_ubuntu_defconfig
configs/nxp_lsl02laiot_ubuntu_full defconfig
configs/nxp 1s102latsn ubuntu defconfig
configs/nxp 1sl02latsn_ubuntu full defconfig
configs/imx6g-sabresd ubuntu defconfig
configs/imx6g-sabresd ubuntu full defconfig
configs/nxp 1x2160ardb-64b ubuntu defconfig
configs/nxp 1x2160ardb-64b ubuntu full defconfig

configs/nxp 1x2160ardb rev2-64b ubuntu defconfig

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

19/237

NXP Semiconductors

— configs/nxp 1x2160ardb rev2-64b ubuntu full defconfig

— configs/imx8mpevk ubuntu defconfig

Note:

*%

**_ubuntu_full_default: all packages in **_ubuntu_default and other necessary packages required by all

features supported.

2.2.5 Building the images

_ubuntu_default: including basic packages to boot the system

Getting started

For the NXP platforms supported by OpenlL, the default configuration files can be found in the configs directory. The following
table describes the default configuation files for the NXP-supported OpenlL platforms.

Table 8. Default configuration

Platform

Configuration file in OpenlL

i.MX6Q SabreSD

configs/imx6qg-sabresd_defconfig

i.MX6Q SabreSD (Baremtal)

configs/imx6qg-sabresd_baremetal_defconfig

i.MX6Q SabreSD (Ubuntu)

configs/imx6qg-sabresd_ubuntu_defconfig

i.MX6Q SabreSD (Full ubuntu)

configs/imx6qg-sabresd_ubuntu_full_defconfig

i.MX8MP EVK (64bit)

configs/imx8mpevk_defconfig

i.MX8MP EVK (Ubuntu)

configs/imx8mpevk_ubuntu_defconfig

LS1012ARDB (64bit)

configs/nxp_Is1012ardb-64b_defconfig

LS1021AI0T

configs/nxp_Is1021aiot_defconfig

LS1021AIOT (OP-TEE)

configs/nxp_ls1021aiot_optee_defconfig

LS1021AIOT (Baremetal)

configs/nxp_ls1021aiot_baremetal_defconfig

LS1021AIOT (Ubuntu)

configs/nxp_ls1021aiot_ubuntu_defconfig

LS1021AIOT (Full ubuntu)

configs/nxp_ls1021aiot_ubuntu_full_defconfig

LS1021ATSN

configs/nxp_ls1021atsn_defconfig

LS1021ATSN (OP-TEE-SB)

configs/nxp_ls1021atsn_optee-sb_defconfig

LS1021ATSN (Ubuntu)

configs/nxp_ls1021atsn_ubuntu_defconfig

LS1021ATSN (Full ubuntu)

configs/nxp_ls1021atsn_ubuntu_full_defconfig

LS1021ATWR (QSPI)

configs/nxp_ls1021atwr_defconfig

LS1021ATWR (IFC)

configs/nxp_Is1021atwr_sdboot_ifc_defconfig

LS1028ARDB (EMMC)

configs/nxp_Is1028ardb-64b-emmc_defconfig

LS1028ARDB (XSPI)

configs/nxp_Is1028ardb-64b-xspi_defconfig

LS1028ARDB (Baremetal)

configs/nxp_Is1028ardb_baremetal-64b_defconfig

LS1028ARDB (64bit)

configs/nxp_ls1028ardb-64b_defconfig

LS1028ARDB (Ubuntu)

configs/nxp_ls1028ardb-64b_ubuntu_defconfig

LS1028ARDB (Full ubuntu)

configs/nxp_ls1028ardb-64b_ubuntu_full_defconfig

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

20/237

NXP Semiconductors

Table 8. Default configuration (continued)

Getting started

Platform

Configuration file in OpenliL

LS1028ATSN (64bit)

configs/fii_Is1028atsn-64b_defconfig

LS1028ATSN (Ubuntu)

configs/fii_Is1028atsn-64b_ubuntu_defconfig

LS1028ATSN (Full ubuntu)

configs/fii_ls1028atsn-64b_ubuntu_full_defconfig

LS1043ARDB (64bit)

configs/nxp_Is1043ardb-64b_defconfig

LS1043ARDB (Baremetal)

configs/nxp_ls1043ardb_baremetal-64b_defconfig

LS1043ARDB (Ubuntu)

configs/nxp_ls1043ardb-64b_ubuntu_defconfig

LS1043ARDB (Full ubuntu)

configs/nxp_ls1043ardb-64b_ubuntu_full_defconfig

LS1046ARDB (64-bit)

configs/nxp_ls1046ardb-64b_defconfig

LS1046ARDB (EMMC)

configs/nxp_ls1046ardb-64b-emmcboot_defconfig

LS1046ARDB (QSPI)

configs/nxp_ls1046ardb-64b_qgspi_defconfig

LS1046ARDB (QSPI-SB)

configs/nxp_ls1046ardb-64b_gspi-sb_defconfig

LS1046ARDB (QSPI4EMMC)

configs/nxp_ls1046ardb-64b-emmc_gspiboot_defconfig

LS1046ARDB (Baremetal)

configs/nxp_Is1046ardb_baremetal-64b_defconfig

LS1046ARDB (Ubuntu)

configs/nxp_Is1046ardb-64b_ubuntu_defconfig

LS1046ARDB (Full ubuntu)

configs/nxp_ls1046ardb-64b_ubuntu_full_defconfig

LS1046AFRWY (64bit) configs/nxp_Is1046afrwy-64b_defconfig
LS1046AFRWY (QSPI) configs/nxp_Is1046afrwy-64b_qgspi_defconfig
LS1046AFRWY (Ubuntu) configs/nxp_Is1046afrwy-64b_ubuntu_defconfig

LS1046AFRWY (Full ubuntu)

configs/nxp_ls1046afrwy-64b_ubuntu_full_defconfig

LX2160ARDB (64bit)

configs/nxp_Ix2160ardb-64b_defconfig

LX2160ARDB (XSPI)

configs/nxp_Ix2160ardb-64b-xspi_defconfig

LX2160ARDB (Baremetal)

configs/nxp_Ix2160ardb_baremetal-64b_defconfig

LX2160ARDB (Ubuntu)

configs/nxp_Ix2160ardb-64b_ubuntu_defconfig

LX2160ARDB (Full ubuntu)

configs/nxp_Ix2160ardb-64b_ubuntu_full_defconfig

LX2160A Rev2 RDB (64bit)

configs/nxp_Ix2160ardb_rev2-64b_defconfig

LX2160A Rev2 RDB (XSPI)

configs/nxp_Ix2160ardb_rev2-64b-xspi_defconfig

LX2160A Rev2 RDB (Baremetal)

configs/nxp_Ix2160ardb_rev2_baremetal-64b_defconfig

LX2160A Rev2 RDB (Ubuntu)

configs/nxp_Ix2160ardb_rev2-64b_ubuntu_defconfig

LX2160A Rev2 RDB (Full ubuntu)

configs/nxp_Ix2160ardb_rev2-64b_ubuntu_full_defconfig

The “configs/nxp xxxx defconfig”files listed in the preceding table include all the necessary U-Boot, kernel
configurations, and application packages for the filesystem. Based on the files without any changes, user can build a complete
Linux environment for the target platforms.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

21/237

NXP Semiconductors

To build the images for an NXP platform (for example, LS1046ARDB), run the following commands:

Uy = U Uy

cd openil

make nxp 1sl046ardb-64b defconfig
make

or make with a log

make 2>&1 | tee build.log

NOTE

The make clean command should be implemented before any other new compilation.

The make command generally performs the following steps:

Downloads source files (as required and at the first instance);
Configures, builds, and installs the cross-compilation toolchain;
Configures, builds, and installs selected target packages;
Builds a kernel image, if selected;

Builds a bootloader image, if selected;

Creates the BL2, BL31, BL33 binary from ATF;

Creates a root filesystem in selected formats.

Generates the Image file for booting;

After the correct compilation, all the images for the platform can be found at output/images.

images/

F— bl2 sd.pbl --— BL2 + RCW

— fip.bin --- BL31 + BL33 (uboot)
F— rcw 1800 sdboot.bin --- RCW binary

F—— boot.vfat

F—— fmucode.bin

F—— fsl-1s1046a-rdb-sdk.dtb --- dtb file for 1sl046ardb
F—— rootfs.ext2

F—— rootfs.ext4

— rootfs.tar

F—— sdcard.img -—-- entire image can be programmed into the SD
F—— uboot-env.bin

F— u-boot-dtb.bin --- uboot image for 1sl046ardb

L— Image --- kernel image for 1lsl046ardb

Notice: Image file name used for each configurations as following described:

xspi.cpio.img: the image file used for FlexNor flash boot, built by *xspi_defconfig
sdcard.img: the image file used for SD or eMMC boot, built by default and *emmc_defconfig

gspi.cpio.img: the image file used for QSPI flash boot, built by *gspi_defconfig

2.2.6 Troubleshooting
» User can login all platform through SSH. But for LS1028ARDB and i.MX8MPEVK, Linux-PAM is enabled which is required

by weston, if user don't want to follow Linux-PAM policy to login through SSH, below steps are necessary:

1> Open file /etc/ssh/sshd.config and comment out below line:
UsePAM yes

2> Then, restart SSHD with command:

$ /etc/init.d/S50sshd restart

Open Industrial User Guide, Rev. 1.9, 09/2020

Getting started

User's Guide

227237

NXP Semiconductors

Getting started

 All configurations are built by the nomal user. But, "sudo" permission is required when building ubuntu root file system on
HOST machine. User can enter below line to file "/etc/sudoers" to avoid enter sudo password during building ("username"
should be changed to the true user name),

username

ALL=(ALL:ALL) NOPASSWD:ALL

* The pERL_MM OPT issue: User might encounter an error message for the pPERL_MM_0PT parameter when using the make
command in some host Linux environment as shown below:

You have PERL MM OPT defined because Perl local::1ib is installed on your system.
Please unset this variable before starting Buildroot, otherwise the compilation of Perl
related packages will fail.

make
make

[1]: *** [core-dependencies]
*** [all] Error 2

Error 1

To resolve this issue, just unset the PERL MM OPT parameter.

$ unset PERL MM OPT

2.3 Booting the board

Before proceeding further with the instructions in this section, refer to the Geffing Started Guide of the respective board for detailed
instructions regarding board boot-up. See Reference documentation.

» Before booting up the board, user need to install mbed Windows serial port driver in order to obtain the board
console. This is a one time activity. Please ignore this step if user have already installed the mbed driver on
user system (PC or laptop). User can download the mbed Windows serial port driver from the link below:

NOTE

https://developer.mbed.org/handbook/Windows-serial-configuration.

» Download and install Tera Term on the host computer from the Internet. After installation, a shortcut to the tool

is created on the desktop of the host computer.

« Ifuseris using a Windows 10 machine as a host computer and encountering a serial port unstable issue, then,

disable the Volume Storage service of the Windows machine.

All the NXP platforms can be booted up from the SD card or QSPI flash. After the compilation for one platform, the image files
(sdcard.img or gspi.img) are generated in the folder output/images. The following table describes the software settings to be
used while booting up the NXP platforms with the images built from OpenliL.

Table 9. Switch settings for the NXP boards

Platform Boot mode Image name | Board SWITCH Setting (ON = 1)
i.MX6Q SabreSD SD card sdcard.img | SW6 = 0b’01000010
i.MX8MP EVK SD card sdcard.img | SW4[1-4] = 0b'0011
LS1012ARDB QSPI gspi.cpio.im | SW1 = 0b'10100110
9 SW2 = 0b'00000000
LS1021AI0T SD card sdcard.img | SW2[1] =0b’0
LS1021ATSN SD card sdcard.img | SW2 =0b111111
LS1021ATWR SD card sdcard.img | QSPI enabled: SW2[1-8] = 0b'00101000, SW3[1-8] = 0b'01100001

IFC enabled: SW2[1-8] = 0b'00100000, SW3[1-8] = 0b'01100001

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

23/237

https://developer.mbed.org/handbook/Windows-serial-configuration

NXP Semiconductors

Getting started

Table 9. Switch settings for the NXP boards (continued)

Platform Boot mode Image name | Board SWITCH Setting (ON = 1)
LS1028ARDB SD card sdcard.img | SW2[1-8] = 0b’10001000
LS1043ARDB SD card sdcard.img | SW4[1-8] +SW5[1] = 0b'00100000_0
LS1046ARDB SD card sdcard.img | SW5[1-8] +SW4[1] = 0b'00100000_0
LS1046AFRWY SD card sdcard.img | SW1[1-9] = 0b'0_01000000
LX2160ARDB/Rev2 | SD card sdcard.img | SW1[1-4] = 0b’1000

The flash image (sdcard.img or gspi.img) includes all the information: RCW, DTB, U-Boot, kernel, rootfs, and
necessary applications.

NOTE
Make sure the board is set to boot up from SD card or QSPI using software configuration. Refer to the preceding
table for the switch settings for the respective platform.

2.3.1 SD card bootup
For platforms that can be booted up from an SD card, following are the steps to program the sdcard.img.into an SD card:
1. Insert one SD card (at least 4G size) into any Linux host machine.

2. Run the below commands:

$ sudo dd if=./sdcard.img of=/dev/sdx
or in some other host machine:
S sudo dd if=./sdcard.img of=/dev/mmcblkx

Y ”

find the right SD Card device name in user host machine and replace the “sdx” or “mmcblkx”.

3. Now, insert the SD card into the target board (switch the board boot from SD card first) and power on.

2.3.2 QSPI/FlexSPI bootup

For platforms that can be booted up from QSPI (for example, LS1012ARDB), following are the steps to program the gspi.img into
QSPI flash.

Set the board boot from QSPI, then power on, and enter the U-Boot command environment.

FlexSPI (XSPI, image name is xspi.cpio.img) boot has the same commands to make the flash.

In order to void damage the default bank which will cause the board can NOT bootup, we need to
write the image to altbank for 1s10l2ardb

First, select the altbank with below command

=>i2c mw 0x24 0x7 Oxfc; i2c mw 0x24 0x3 0xf5

Then, download the image gspi.cpio.img

=>tftp 0x80000000 gspi.cpio.img

Last, erase the flash and write the image to flash
=>sf probe 0:0

=>sf erase 0x0 +$filesize

=>sf write 0x80000000 0x0 S$filesize

=>reset

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 24 [237

NXP Semiconductors

Getting started

2.3.3 eMMC bootup

For platforms that can be booted up from eMMC (for example, Is1028ardb, Is1046ardb), following below steps to program the
sdcard.img into eMMC:

1. LS1028ARDB eMMC bootup

1> Bootup the Is1028ardb into u-boot prompt with XSPI or SD boot.
2> Download the image from server

eMMC boot image is built with nxp_Is1028ardb-64b-emmc_defconfig.

Make sure network in uboot can access TFTP server and eMMC bootup image is ready in this server

=> tftpboot 0xa0000000 sdcard.img

3> Select eMMC

=> mmc dev 1

=> mmcinfo

Device: FSL_SDHC
Manufacturer ID: 13

OEM: l4e

Name: Q2J55

Bus Speed: 52000000

Mode: MMC High Speed (52MHz)
Rd Block Len: 512

MMC version 5.0

High Capacity: Yes

Capacity: 7.1 GiB

Bus Width: 4-bit

Erase Group Size: 512 KiB
HC WP Group Size: 8 MiB
User Capacity: 7.1 GiB WRREL
Boot Capacity: 2 MiB ENH
RPMB Capacity: 4 MiB ENH

4> Flash sdcard.img to eMMC
First, erase eMMC, the block number is calculated by image-bytes/block-size (usually, the block size is 512).
For example, image bytes is 725191680, the block number is: 725191680 / 512 = 0x159CCS6.

Below is assume the image size is 725191680 and block number is 0x159CC6, parameter greater than 0x159CC6 can be used,
for example 0x160000, user should change this parameter according to the true size of sdcard.img.

=> mmc erase 0 0x160000
-> mmc write 0xa0000000 0 0x160000

5> reset the board to eMMC boot
=> gixis reset emmc
Or, power off Is1028ardb board, change the switch setting SW2[1-4] = 0b'1001, then power on Is1028ardb, the board can be
bootup from eMMC directly.
2. LS1046ARDB eMMC bootup
1> Build two images with nxp_Is1046ardb-64b-emmc_gspiboot_defconfig and nxp_ls1046ardb-64b-emmcboot_defconfig
gspi.cpio.img: built with nxp_Is1046ardb-64b-emmc_gspiboot_defconfig
sdcard.img: built with nxp_Is1046ardb-64b-emmcboot_defconfig

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 25/237

NXP Semiconductors

Getting started

2> Bootup the Is1046ardb board to uboot prompt with QSPI or SD boot
Make sure uboot network can access TFTP server and these two images are ready in this server.

3> Flash gspi.cpio.img to QSPI to enable eMMC

=> tftpboot 0xa0000000 gspi.cpio.img
=> sf probe 0:0

=> sf erase 0x0 +$filesize

=> sf write 0xa0000000 0x0 $filesize

3> Remove SD card from SD slot, and reset the board with gspi boot.
=> cpld reset gspi
Now the eMMC can be accessed.

=> mmcinfo

Device: FSL_SDHC
Manufacturer ID: fe

OEM: 1l4e

Name: P1XXX

Bus Speed: 52000000

Mode : MMC High Speed (52MHz)
Rd Block Len: 512

MMC version 4.5

High Capacity: Yes
Capacity: 3.6 GiB

Bus Width: 4-bit

Erase Group Size: 512 KiB
HC WP Group Size: 4 MiB
User Capacity: 3.6 GiB
Boot Capacity: 2 MiB ENH
RPMB Capacity: 128 KiB ENH

4> Download eMMC bootup image

=> tftpboot 0xa0000000 sdcard.img
5> Flash this image to eMMC
First, erase eMMC, the block number is calculated by image-bytes/block-size (usually, the block size is 512).

For example, image bytes is 738197504, the block number is: 738197504 / 512 = 0x160000.

Below is assume the image size is 738197504 and block number is 0x160000. The parameter greater than 0x160000 can be used,
for example 0x170000, user should change this parameter according to the true size of sdcard.img.

=> mmc erase 0 0x170000
-> mmc write 0xa0000000 0 0x170000

6> Reset board to eMMC boot
=> cpld reset sd

Or, power off the Is1046ardb board, set the switch to SD boot, and power on the board.

Make sure there is not SD card in SD slot if user want eMMC boot.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 26 /237

NXP Semiconductors

Getting started

2.3.4 Starting up the board

After the sdcard.img/qspi.img programming, startup the board. User should see the following information.

Starting logging: OK
Initializing random number generator... 6.120727] random: dd urandom read with 13 bits of entropy available
done.
Mounting cgroupfs hierarchy: 0K
Starting system m ge bus: done
arting network:
: generatlng new host keys: RSA DSA ECDSA ED25519

p- 2016)
3] EXT4-fs (mmcblkep2): 71 11 es em from 2128600 to 2897152 blocks
ev/mmchlkop2 is [8527] EXT4-fs (mmcblkepz): rti1 11 stem to meta_bg
mounted on /; on-line resizing requlred
old_ dEHC _blocks = 1,
[.6116 EXT4-fs (mmchlkepz):
[?. 4] random: nonblocking poel ed
em on /dev/mmcblk@p2 1s now 2097152 (1#] blocks long.

Open Industrial Linux
[I
I I
[l
(I

openil.org

[root@0penIl:~]#

Figure 2. OpenlL system startup

The system will be logged in automatically.

2.4 Basic OpenlL operations
This section describes the commands that can be used for performing basic OpenliL operations.

In OpenlL, all packages used are in directory ". /package/", and the package name is the sub-directory name. Linux kernel and
uboot are also packages, the package name for Linux kernel is 1inux, and package name for u-boot is uboot.

Sample usages of the ‘make’ command:

» Displays all commands executed by using the make command:
$ make V=1 <target>
 Displays the list of boards with a defconfig:
$ make list-defconfigs
 Displays all available targets:
$ make help
» Sets Linux configurations:
$ make linux-menuconfig

» Deletes all build products (including build directories, host, staging and target trees, images, and the toolchain):

$ make clean

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 27 1237

NXP Semiconductors

* Resets OpenlL for a new target.

* Deletes all build products as well as the configuration (including d1 directory):

$ make distclean

Explicit cleaning is required when any of the architecture or toolchain configuration options are changed.

NOTE

» Downloading, building, modifying, and rebuilding a package

Run the below command to build and install a particular package and its dependencies:

$ make <pkg>

Getting started

For packages relying on the OpenliL infrastructure, there are numerous special make targets that can be called independently
such as the below command:

$ make <pkg>-<target>

The package build targets are listed in the following table.

Table 10. Package build targets

Package Target

Description

<pkg>

Builds and installs a package and all its dependencies

<pkg>-source

Downloads only the source files for the package

<pkg>-extract

Extracts package sources

<pkg>-patch

Applies patches to the package

<pkg>-depends

Builds package dependencies

<pkg>-configure

Builds a package up to the configure step

<pkg>-build

Builds a package up to the build step

<pkg>-show-depends

Lists packages on which the package depends

<pkg>-show-rdepends

Lists packages which have the package as a dependency

<pkg>-graph-depends

Generates a graph of the package dependencies

<pkg>-graph-rdepends

Generates a graph of the package's reverse dependencies

<pkg>-dirclean

Removes the package's build directory

<pkg>-reconfigure

Restarts the build from the configure step

<pkg>-rebuild

Restarts the build from the build step

Thus, a package can be downloaded in the directory d1/, extracted to the directory output/build/<pkg>, and then built in
the directory output/build/<pkg>. User need to modify the code in the output/build/<pkg>, and then run the command,
$make <pkg>-rebuild to rebuild the package.

For more details about OpenlL operations, refer to the Buildroot document available at the URL: https://buildroot.org/downloads/
manual/manual.html#getting-buildroot.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

28/237

https://buildroot.org/downloads/manual/manual.html#getting-buildroot
https://buildroot.org/downloads/manual/manual.html#getting-buildroot

NXP Semiconductors

Getting started

2.4.1 Building Linux kernel

OpenlL is one tool to building the final flash/SD image, including Linux kernel.

If user want to build the Linux kernel separately, they can follow below methods.
1. Build Linux kernel in OpenlL without code modified

This is the simple method to build the Linux kernel, with following command:

enter openil directory

cd openil

make one default configuration file, for example nxp 1s1028ardb-64b defconfig
make nxp 1s1028ardb-64b_defconfig

build the Linux kernel image, which will be stored in directory output/images/

W o O o D H*

make linux

2. Build Linux kernel in OpenlL with code modified
If user want to modify the Linux code and build it, user can follow below steps.

1> Clone the Linux repos from github.com/openil/linux
$ git clone https://github.com/openil/linux.git

2> Enter "linux" repos and checkout to current release tag or any tag user want, for example OpenlL-v1.9-linux-202009

$ git checkout -b OpenIL-v1.9-1inux-202009 OpenIL-v1.9-1inux-202009

3> Modify the code and generate the patch following "git" usage.
4> Copy these patches just generated from "linux" directory to openil linux directory with 0001-xx, 0002-xx, ... order

5> build the Linux image with command "make linux"

$ make linux

3. Build Linux kernel in separate directory with code modified
There is another way to build the Linux image with code modified.
Following steps will explain how to do it (Is1028ardb board as example).

1> Setup cross-compile environment

downloading toolchain armv8-64bit (1sl028ardb is armv8 and 64bit)

S wget https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-
x86_64-aarch64-none-linux-gnu.tar.xz

extracting the toolchain tarball to /opt

tar xvf gcc-arm-9.2-2019.12-x86 64-aarch64-none-linux-gnu.tar.xz -C /opt/

setting environment variables

export PATH=$PATH:/opt/gcc-arm-9.2-2019.12-x86 64-aarch64-none-linux-gnu/bin/

export ARCH=arm64

export CROSS COMPILE=aarché64-none-linux-gnu-

W A W FH= W

2> Clone the Linux repos from github.com/openil/linux
$ git clone https://github.com/openil/linux.git
3> Enter "linux" repos and checkout to current release tag or any tag user want, for example OpenlL-v1.9-linux-202009

$ git checkout -b OpenIL-v1.9-1inux-202009 OpenIL-v1.9-1inux-202009

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 29/237

NXP Semiconductors

Getting started

4> Modify the code

5> Build the Linux image with below command

$ make defconfig lsdk.config
$ make
6> Replace the Linux image
"Image" file built just is in "arch/arm64/boot/", DTB file "fsl-Is1028a-rdb.dtb" is in "arch/arm64/boot/dts/freescale/".

Copy them to openil directory "output/images/", and rebuild the flash image with bellow comamnd:

in OpenIL directory
$ make

2.4.2 Building U-Boot

OpenlL is one tool to building the final flash/SD image, including u-boot.

If user want to build the u-boot separately, they can follow below methods.

1. Build U-Boot in OpenlL without code modified

This is the simple method to build the U-Boot, with following command:

enter openil directory

cd openil

make one default configuration file, for example nxp 1s1028ardb-64b defconfig
make nxp 1s1028ardb-64b_defconfig

build the U-Boot image, which will be stored in directory output/images/
make uboot

W o 0 o D H*

2. Build U-Boot in OpenlL with code modified
If user want to modify the U-Boot code and build it, user can follow below steps.

1> Clone the U-Boot repos from github.com/openil/u-boot
$ git clone https://github.com/openil/u-boot.git

2> Enter "u-boot" repos and checkout to current release tag or any tag user want, for example OpenlL-v1.9-u-boot-202009
$ git checkout -b OpenIL-vl.9-u-boot-202009 OpenIL-v1l.9-u-boot-202009

3> Modify the code and generate the patch following "git" usage.

4> Copy these patches just generated from "u-boot" directory to openil uboot directory "boot/uboot/" with 0001-xx, 0002-
XX, ... order

5> build the U-Boot image with command "make uboot"

$ make uboot

3. Build U-Boot in separate directory with code modified
There is another way to build the U-Boot image with code modified.
Following steps will explain how to do it (Is1028ardb board as example).

1> Setup cross-compile environment

downloading toolchain armv8-64bit (1sl028ardb is armv8 and 64bit)
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 30/237

NXP Semiconductors

Getting started

x86_64-aarch64-none-linux-gnu.tar.xz

extracting the toolchain tarball to /opt

tar xvf gcc-arm-9.2-2019.12-x86 64-aarch64-none-linux-gnu.tar.xz -C /opt/
setting environment variables

export PATH=$PATH:/opt/gcc-arm-9.2-2019.12-x86 64-aarch64-none-linux-gnu/bin/
export ARCH=arm64

export CROSS COMPILE=aarché64-none-linux-gnu-

w» N A FH W

2> Clone the U-Boot repos from github.com/openil/u-boot

$ git clone https://github.com/openil/u-boot.git

3> Enter "u-boot" repos and checkout to current release tag or any tag user want, for example OpenlL-v1.9-u-boot-202009
$ git checkout -b OpenIL-vl.9-u-boot-202009 OpenIL-vl.9-u-boot-202009

4> Modify the code

5> Build the U-Boot image with below command

$ make 1s1028ardb_tfa defconfig
$ make
6> Replace the U-Boot image
All images just built are in current u-boot root directory.

Copy u-boot-dtb.bin to openil directory "output/images/", and rebuild the flash image with bellow comamnd:

in OpenIL directory, build arm-trusted-firmware again, because U-Boot image is used to generate
fip.bin and bl2 image

$ make arm-trusted-firmware

$ make

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 31/237

NXP Semiconductors

Chapter 3
NXP OpeniL platforms

OpenlL supports the following NXP Layerscape ARM® platforms: LS1012ARDB, LS1021A-TSN, LS1021-loT, LS1021A-
TWR, LS1043ARDB, LS1046ARDB, LS1046AFRWY, LS1028ARDB, LS1028ATSN, LX2160ARDB/Rev2, i.MX6QSabreSD and
i.MX8MPEVK. For more information about those platforms, refer to the following URLSs:

* http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qorig-layerscape-arm-processors:QORIQ-
ARM.

* https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-
processors:IMX_HOME

3.1 Introduction

This chapter provides instructions on booting up the boards with a complete SD card or QSPI image. It also describes the process
for deploying the U-Boot, Linux kernel, and root file system on the board. The instructions start with generic host and target board
pre-requisites. These are followed by the board-specifc configurations listed below:

» Switch settings

» U-Boot environment variables
 Device microcodes or firmware
* Reset configuration word (RCW)

» Flash bank usage

NOTE
This chapter is meant for those who want to perform more sub-system debugs, such as U-Boot, kernel, and so on.
At the beginning, the board should be booted up and run in U-Boot command environment.

3.2 LS1021A-TSN

The LS1021A Time-Sensitive Networking (TSN) reference design is a platform that allows developers to design solutions with the
new |IEEE Time-Sensitive Networking (TSN) standard. The board includes the QorlQ Layerscape LS1021A industrial applications
processor and the SJA1105T TSN switch. The LS1021A-TSN is supported by an industrial Linux SDK with Xenomai real time
Linux, which also provides utilities for configuring TSN on the SJA1105T switch.

With virtualization support, trust architecture, secure platform, Gigabit Ethernet, SATA interface, and an Arduino Shield connector
for multiple wireless modules, the LS1021A-TSN platform readily supports industrial 10T requirements.

3.2.1 Switch settings
The following table lists and describes the switch configuration for LS1021ATSN board.

NOTE
OpenlL supports only the SD card boot for LS1021ATSN platform.

Table 11. LS1021ATSN SD boot software setting

Platform Boot source Software setting

LS1021ATSN SD card SW2 =0b111111

3.2.2 Updating target images
Use the following commands to build the images for LS1021A-TSN platform:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 32/237

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors:QORIQ-ARM
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors:QORIQ-ARM
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME

NXP Semiconductors

NXP OpenlL platforms
* Building images

cd openil

make nxp 1sl102latsn defconfig
make

or make with a log

make 2>&1 | tee build.log

»r #H= W W

* Programming U-Boot in SD card

Power on the LS1021A-TSN board to the U-Boot command environment, then use the following commands:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500

=>mmc write 0x81000000 8 0x500

#then reset the board

 Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk size=50000000 console=ttyS0,115200’

=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage

=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8£000000 1sl102la-tsn.dtb
=>bootm 83000000 88000000 8£000000

3.3 LS1021A-TWR
The NXP® TWR-LS1021A module is a development system based on the QorlQ® LS1021A processor.

This feature-rich, high-performance processor module can be used standalone or as part of an assembled Tower® System
development platform.

Incorporating dual Arm® Cortex®-A7 cores running up to 1 GHz, the TWR-LS1021A delivers an outstanding level of performance.
The TWR-LS1021A offers HDMI, SATA3 and USB3 connectors as well as a complete Linux software developer's package.
The module provides a comprehensive level of security that includes support for secure boot, Trust Architecture and tamper
detection in both standby and active power modes, safeguarding the device from manufacture to deployment.

3.3.1 Switch settings

The following table lists and describes the switch configuration for LS1021ATWR board.

Platform Boot source SW setting

LS1021ATWR SD IFC enabled: SW2[1~8] = 0b'00101000; SW3[1-8] = 0b'01100001
QSPI enabled: SW2[1-8] = 0b'00100000; SW3[1-8] = 0b'01100001

3.3.2 Updating target images
Use the following commands to build the images for LS1021A-TWR platform:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 33/237

NXP Semiconductors

* Building images

cd openil

make nxp 1sl02latwr defconfig
make

or make with a log

make 2>&1 | tee build.log

»r #H= W W

* Programming U-Boot in SD card

NXP OpenlL platforms

Power on the LS1021A-TWR board to the U-Boot command environment, then use the following commands:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500

=>mmc write 0x81000000 8 0x500

#then reset the board

 Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk size=50000000 console=ttyS0,115200’

=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage

=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8£000000 1sl02la-twr.dtb
=>bootm 83000000 88000000 8£000000

3.4 LS1021A-loT

The LS1021A-1oT gateway reference design is a purpose-built, small footprint hardware platform equipped with a wide array
of both high-speed connectivity and low speed serial interfaces. It is engineered to support the secure delivery of loT services
to end-users at their home, business, or other commercial locations. The LS1021A-loT gateway reference design offers an
affordable, ready-made platform for rapidly deploying a secure, standardized, and open infrastructure gateway platform for

deployment of loT services.

3.4.1 Switch settings

The following table lists and describes the switch configuration for LS1021A-IoT board.

NOTE

OpenlL supports only the SD card boot for the LS1021A-loT platform.

Table 12. LS1021A-loT SD boot software setting

Platform Boot source

software setting

LS1021A-loT SD card

SW2[1] = 0b'0

3.4.2 Updating target images

Use the following commands to build the images for LS1021A-loT platform:

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

34 /237

NXP Semiconductors

* Building images
cd openil

make

»r #H= W W

* Programming U-Boot on the SD card

make nxp 1sl02laiot defconfig

or make with a log
make 2>&1 | tee build.log

NXP OpenlL platforms

Power on the LS1021A-loT board to U-Boot command environment. Then, use the commands below:

=>tftp 81000000 u-boot-with-spl-pbl.bin
=>mmc erase 8 0x500

=>mmc write 0x81000000 8 0x500

#then reset the board

 Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘root=/dev/ram0 rw ramdisk size=50000000 console=ttyS0,115200’

=>saveenv

2. Boot up the system.

=>tftp 83000000 uImage

=>tftp 88000000 rootfs.cpio.uboot

=>tftp 8£000000 1sl02la-iot.dtb

=>bootm 83000000 88000000 8£000000

3.5 LS1043ARDB, LS1046ARDB and LS1046AFRWY

The QorlQ LS1043A and LS1046A reference design boards are designed to exercise most capabilities of the LS1043A
and LS1046A devices. These are NXP’s first quad-core, 64-bit ARM®-based processors for embedded networking and

industrial infrastructure.

3.5.1 Switch settings
OpenlL supports only the SD card boot mode for LS1043ARDB and the LS1046ARDB platforms.

Table 13. LS1043ARDB/LS1046ARDB SD boot software settings

Platform Boot source Software setting

LS1043ARDB SD card SW4[1-8] +SW5[1] = 0b'00100000_0
LS1046ARDB SD card SW5[1-8] +SW4[1] = 0b'00100000_0
LS1046AFRWY SD card SW1[1-10] = 0b'0010000000

NOTE

In order to identify the LS1043A silicon correctly, users should ensure that the SW5[7-8] is = 0b’11.

3.5.2 Updating target images

For LS1043ARDB, LS1046AFRWY and LS1046ARDB platforms, the OpenlL can support 64-bit systems. Use the following
commands to build the images for the LS1043ARDB, LS1046AFRWY or LS1046ARDB platforms:

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

35/237

NXP Semiconductors

NXP OpenlL platforms

* Building images

$ cd openil

$ make nxp 1s1043ardb-64b defconfig
or

$ make nxp 1sl046ardb-64b defconfig
or

S make nxp 1sl046afrwy-64b defconfig
$ make

or make with a log

$ make 2>&1 | tee build.log

* Programming BL2, RCW, BL31, U-Boot and FMan ucode in SD card

Power on the LS1043ARDB / LS1046ARDB/LS1046AFRWY board to U-Boot command environment, then use the
following commands:

programming BL2 and RCW (for example: boot from SD card)
=> tftpboot 82000000 bl2 sd.pbl

=> mmc erase 8 800

=> mmc write 82000000 8 800

programming the FMan ucode

=> tftpboot 82000000 fmucode.bin

=> mmc erase 0x4800 0x200

=> mmc write 82000000 0x4800 0x200

programming the BL31 and U-Boot firmware
=> mmc erase 0x800 0x2000

=> tftpboot 82000000 fip.bin

=> mmc write 82000000 0x800 0x2000

#then reset the board

+ Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs "root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0500 console=ttyS0,115200"

=>saveenv

2. Boot up the system.

for 1sl046ardb

=>tftp 83000000 Image

=>tftp 88000000 rootfs.cpio.uboot

=>tftp 8£000000 fsl-1sl046a-rdb-sdk.dtb

or for 1lslO46afrwy

=>tftp 8f000000 fsl-1sl046a-frwy-sdk.dtb
or for 1s1043ardb

=>tftp 8£f000000 fsl-1s1043a-rdb-sdk.dtb

=>booti 83000000 88000000 8£000000

3.6 LS1012ARDB

The QorlQ LS1012A processor delivers enterprise-class performance and security capabilities to consumer and networking
applications in a package size normally associated with microcontrollers. Combining a 64-bit ARM®v8-based processor with
network packet acceleration and QorlQ trust architecture security capabilities, the LS1012A features line-rate networking
performance at 1 W typical power in a 9.6 mm x 9.6 mm package.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 36/237

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-layerscape-arm-processors/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A

NXP Semiconductors

NXP OpenlL platforms

The QorlQ LS1012A reference design board (LS1012A-RDB) is a compact form-factor tool for evaluating LS1012A application
solutions. The LS1012A-RDB provides an Arduino shield expansion connector for easy prototyping of additional components such
as an NXP NFC Reader module.

3.6.1 Switch settings
The LS1012ARDB platform can be booted up only using the QSPI Flash.

The table below lists the default switch settings and the description of these settings.

Table 14. LS1012ARDB QSPI boot software settings

Platform Boot source SW setting

LS1012ARDB QSPI Flash 1 SW1 = 0b'10100110

SW2 = 0b'00000000

QSPI Flash 2 SW1 =0b'10100110
SW2 = 0b'00000010

3.6.2 Updating target images

For LS1012ARDB platform, the OpenlL supports 32-bit and 64-bit systems. Use the following commands to build the images for
the LS1012ARDB platform:

+ Building images

cd openil

make nxp 1s1012ardb-64b_defconfig
make

or make with a log

make 2>&1 | tee build.log

Ur #H#= 0 U

* Programming BL2, BL31, U-Boot, RCW and pfe firmware in QSPI
Power on the LS1012ARDB board to U-Boot command environment. Then, use the commands below:

programming BL31 and U-Boot
=>i12c mw 0x24 0x7 Oxfc; i2c mw 0x24 0x3 Oxf5
=>tftp 0x80000000 fip.bin
=>sf probe 0:0
=>sf erase 0x100000 +$filesize
=>sf write 0x80000000 0x100000 $filesize
programming BL2 and RCW
=>i12c mw 0x24 0x7 Oxfc; i2c mw 0x24 0x3 Oxf5
=>tftp 0x80000000 bl2 gspi.pbl
=>sf probe 0:0
=>sf erase 0x0 +S$filesize
=>sf write 0x80000000 0x0 S$Sfilesize
programming pfe firmware
=> tftp 0x80000000 pfe fw sbl.itb
=> sf probe 0:0
=> sf erase 0xa00000 +S$filesize
=> sf write 0x80000000 0xa00000 S$filesize
then reset the board

* Deploying kernel and RAMdisk from TFTP

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 3717237

NXP Semiconductors

NXP OpenlL platforms

1. Set the U-Boot environment.

=>setenv bootargs ‘ttyS0,115200 root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0500"'

=>saveenv

2. Boot up the system.

=>tftp a0000000 kernel-1s10l12a-rdb.itb
=>bootm a0000000

3.7 i.MX6QSabreSD

The i.MX 6Dual/6Quad processors feature NXP's advanced implementation of the quad ARM® Cortex®-A9 core, which operates
at speeds up to 1 GHz. These processors include 2D and 3D graphics processors, 3D 1080p video processing, and integrated
power management. Each processor provides a 64-bit DDR3/LVDDR3/LPDDR2-1066 memory interface and a number of other
interfaces for connecting peripherals, such as WLAN, Bluetooth®, GPS, hard drive, displays, and camera sensors.

The Smart Application Blueprint for Rapid Engineering (SABRE) board for smart devices introduces developers to the i.MX

6 series of applications processors. Designed for ultimate scalability, this entry level development system ships with the i.MX
6Quad applications processor but is schematically compatible with i.MX6 Dual, i.MX6 DualLite, and i.MX6 Solo application
processors. This helps to reduce time to market by providing a foundational product design and serves as a launching point for
more complex designs.

3.7.1 Switch settings for the i.MX6Q SabreSD
The following table lists and describes the switch configuration for i.MX6Q SabreSD board:

NOTE
OpenlL supports only the SD card boot for the i.MX6Q SabreSD platform.

Table 15. Switch configuration for the i.MX6Q SabreSD board

Platform Boot source Software setting

i.MX6Q SabreSD SD card on slot 3 SW2[1] = 0b’01000010

3.7.2 Updating target images
Use the following commands to build the images for i.MX6Q SabreSD platform:

Building images

cd openil

make imx6g-sabresd_defconfig
make

or make with a log

make 2>&1 | tee build.log

Uy = U U

See built images as follows:

$ 1ls output/images/

boot.vfat imx6g-sabresd.dtb rootfs.ext2 rootfs.ext2.gz rootfs.extd.gz rootfs.tar sdcard.img
SPL u-boot.bin u-boot.img zImage

Programming U-Boot on the SD card

Power on the board to U-Boot command environment. Then, use the commands below:

$ dd if=SPL of=/dev/sdX bs=1K seek=1
$ dd if=u-boot.imx of=/dev/sdX bs=1K seek=69; sync

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 387237

NXP Semiconductors

NXP OpenlL platforms

NOTE
Replace sdx with user own SD card 'node name' detected by the system.

Deploying kernel and device tree image

Kernel and device tree image are stored in the first partition (vfat) of SD card.

$ cp -avf imx6g-sabresd.dtb /mnt
$ cp -avf zImage /mnt
$ umount /mnt

NOTE
/mnt is the mount point of the vfat partition.

3.8 LS1028ARDB and LS1028ATSN

The QorlQ® LS1028A reference design board (LS1028ARDB) is a computing, evaluation, development, and test platform
supporting the QorlQ LS1028A processor, which is a dual-core Arm® Cortex®-v8 A72 processor with frequency up to 1.3 GHz.
The LS1028ARDB is optimized to support SGMII (1 Gbit/s), QSGMII (5 Gbit/s), PCle x1 (8 Gbit/s), and SATA (6 Gbit/s) over
high-speed SerDes ports, USB 3.0, DisplayPort, and also a high-bandwidth DDR4 memory. The LS1028ARDB can be used to
develop and demonstrate human machine interface systems, industrial control systems such as robotics controllers and motion
controllers, and PLCs. The reference design also provides the functionality needed for Industrial loT gateways, edge computing,
industrial PCs, and wireless or wired networking gateways.

LS1028ATSN board integrates three SJA1105 TSN switches, which will extend the TSN switch to 12 ports.

3.8.1 Switch settings
The following table lists and describes the switch configuration for LS1028ARDB board.

Platform Boot source SW setting

LS1028ARDB SD sw2: 0b’10001000

3.8.2 Interface naming

The following section ddescribes the association between physical interfaces and networking interfaces as presented by
the software.

3.8.2.1 Interface naming in U-Boot

The following figure shows the Ethernet ports as presented in U-Boot:

Note: In U-Boot running on RDB, only enefc#0is functional.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 39/237

NXP Semiconductors

NXP OpenlL platforms

|
enetc#0 !

e

1
enetc#2 i

Figure 3. Ethernet ports in U-Boot

enetc#1 e 3
| - - |
H
swp4 |i swp5
- | 1sWitch
= =
g g swpO | swpl fswp2[iswp3

Table 16. Interface naming in U-Boot

RDB port U-Boot interface | PCI function Comments

1G MAC1 enetc#0 0000:00:00.0 enetc#0 is 1G SGMII port of ENETC.

N/A enefc#1 0000:00:00.1 enelc#1is presented in U-Boot on all boards. This interface is not
functional on RDB.

Internal enefc#2 0000:00:00.2 Connected internally (MAC to MAC) to the Ethernet switch. Note
that the switch is not initialized in U-Boot; therefore, this interface is
not functional.

Internal enetc#3 0000:00:00.6 Connected internally (MAC to MAC) to the Ethernet switch. This
interface is presented if bit 851 is setin RCW. Note that the switch
is not initialized in u-boot; therefore, this interface is not functional.

1G SWPO to N/A 0000:00:00.5 The switch is currently not initialized by U-Boot; therefore, these

1G SWP3 interfaces are not functional.
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 40/ 237

NXP Semiconductors

NXP OpenlL platforms

3.8.2.2 Interface naming in Linux

The following figure shows how Ethernet ports are presented in Linux for LS1028ARDB.

swpO = swpl swp2 i swp3

‘enuo‘ ennl”ennz IeXB
|
swp4 i swp5
— .| iswitch _
S
7S I
X SGMI

Figure 4. Ethernet ports in Linux

Table 17. Interface naming in Linux

RDB port Linux netdev PCI function Comments
1G MAC1 eno0 0000:00:00.0
N/A enoft 0000:00:00.1 RGMII interface is not present on RDB board and the associated
ENETC interface is disabled in device tree:
&enetc_portl
{ status = "disabled";
}
Internal eno2 0000:00:00.2 Connected internally (MAC to MAC) to swp4. This is used to carry
traffic between the switch and software running on ARM cores.
Table continues on the next page...
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 41237

NXP Semiconductors

Table 17. Interface naming in Linux (continued)

NXP OpenlL platforms

Internal eno3 0000:00:00.6 Connected internally (MAC to MAC) to swp). This is intended to
be used by user- space data-path applications and is disabled by
default. It can be enabled by setting bit 851 in RCW.

1G SWPO to swpOto swp3 | 0000:00:00.5 By default, switching is not enabled on these ports.

1G SWP3

Internal swp4 Connected internally (MAC to MAC) to enoZ.

Internal swps Last switch port (connected to enod) is currently not presented
in Linux.

3.8.2.3 Interface naming for LS1028ATSN

The following figure shows how Ethernet ports are presented both in uboot and Linux.

swpD

1510238

swp2

RGMIIO

swpl|«

RTL8211FSI

¥ . Address: 0X07 swOp0
SJA1105
G RGMIN I vscgso2
. Op1l
#1 Address: 0x0 e
«_ RGMII2 Address: 0x1 swOp2
« RGMIO [vsc8502
Address: 0x9 5W1p0
- RGMIIL Address: 0x8 swilpl
«_ SGMII SIAL105 Daughter board#1
#2 «_ RGMI2 | vSC8502 swilp2
Address: Ox5
RGMII3 Address: Ox4 swilp3
RGMIIO
S SIA1105 [« M
#3 - Daughter board#2
<« BGMI3

Figure 5. Ethernet ports

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

42237

NXP Semiconductors

Table 18. Interface naming both in uboot and Linux

NXP OpenlL platforms

LS1028ATSN port | Linux netdev PCI function Comments

1G MAC1 eno0 0000:00:00.0

N/A enof 0000:00:00.1

Internal eno2 0000:00:00.2 Connected internally (MAC to MAC) to swp4. This is used to carry
traffic between the switch and software running on ARM cores.

Internal eno3 0000:00:00.6 Connected internally (MAC to MAC) to swp5. This is intended to
be used by user- space data-path applications and is disabled by
default. It can be enabled by setting bit 851 in RCW.

Internal swpOto swp3 0000:00:00.5 By default, switching is not enabled on these ports.

Internal swp4 Connected internally (MAC to MAC) to enoZ2.

Internal swps Last switch port (connected to enod) is currently not presented
in Linux.

1G sw0p0 ~ 1G swOp0~ sw0p2 Connected internal swp0

swOp2

1G sw1p0 ~ 1G sw1p0 ~ sw1p3 Connected internal swp2

sw1p3

3.8.3 Updating target images

This section describes how to update the target images for NXP's LS1028 ARDB/LS1028ATSN platforms. For this
platform, OpenlL can support 64-bit systems. Use the following commands to build the images for the LS1028 ARDB/
LS1028ATSN platforms:

1. Building images

make
or

make

v »r U FHF= U

2. Programming BL2, RCW, BL31, U-Boot in SD card:

cd openil
nxp 1s1028ardb-64b defconfig

make 2>&1 | tee build.log

make fii 1s1028atsn-64b _defconfig
or make with a log

Power on the LS1028 ARDB/LS1028ATSN board to U-Boot command environment, then use the following commands:

programming the BL2 and RCW

=> tftpboot 82000000 bl2 sd.pbl

=> mmc erase 8 0x800

=> mmc write 0x82000000 8 0x800
programming BL31 and U-Boot

=> tftpboot 82000000 fip.bin

=> mmc erase 0x800 0x800

=> mmc write 82000000 0x800 0x2000

programming the u-boot environment

=> tftpboot 82000000 uboot-env.bin

=> mmc erase 0x2800 0x800

(for example: boot from SD card) binary

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

43 /237

NXP Semiconductors

NXP OpenlL platforms

=> mmc write 82000000 0x2800 0x800
#then reset the board

3. Deploying kernel and Ramdisk from TFTP

« Set the U-Boot environment using the commands below:

=> setenv bootargs
"root=/dev/ram0 earlycon=uart8250,mmio, 0x21c0500 console=ttyS0,115200"

=> saveenv

* Boot up the system

=> tftp 83000000 Image

=> tftp 88000000 rootfs.cpio.uboot
=> tftp 8£000000 fsl-1s1028a-rdb.dtb
or

=> tftp 8£f000000 fii-1s1028a-tsn.dtb
=> booti 83000000 88000000 8£000000

3.8.4 LCD controller and DisplayPort/eDP

The LCD controller is a system master that fetches graphics stored in internal or external memory and displays them on a TFT
LCD panel, with resolution up to 4k (3840x2160).

The display PHY controller offers multi-protocol support of standards, such as eDP and DisplayPort with one of these standards
supported at a time.

Following will describe how to setup one lightweight desktop on LS1028ARDB.
1. Building image

$ cd openil

$ make nxp 1s1028ardb-64b ubuntu full defconfig

$ make -3j8

Flash image sdcard.img to SD card and extend the second partition to full space of the card as
previous chapter describes.

2. Connect the displayer to LS1028ARDB:

The default resolution for LS1028ARDB in OpenlL is 1080P (video=1920x1080-32@60), so one displayer support 1080P is
required. If other resolution is wanted, the environment variable "bootargs" in u-boot should be modified according to the
required resolution.

LS1028ARDB has one DP for display, connect LS1028ARDB to displayer with DP cable.
3. Install lightweight desktop:
Xubuntu desktop is one example.

Xubuntu is an elegant and easy to use operating system. Xubuntu comes with Xfce, which is a stable, light and configurable
desktop environment. Xubuntu is perfect for those who want the most out of their desktops, laptops and netbooks with a modern
look and enough features for efficient, daily usage.

Get the IP address (make sure ubuntu can get the IP adress automatically or set it manually)
root@LS1028ARDB-Ubuntu:~# dhclient

Update source list (make sure LS1028ARDB can access internet, setup the proxy if necessary)
root@LS1028ARDB-Ubuntu:~# apt update

Install Xubuntu desktop (More than 2GB space is needed and it will take some time to finish this
job)

root@LS1028ARDB-Ubuntu:~# apt install xubuntu-desktop

Add new user and enter the password

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 44 [237

NXP Semiconductors

NXP OpenlL platforms

Reboot LS1028ARDB board

root@LS1028ARDB-Ubuntu:~# reboot

After rebooting, login dialog will be appeared on displayer, select the user and enter the password
to login.

3.9 LX2160ARDB/Rev2

The QorlQ LX2160A/Rev2 processor is built on NXP's software-aware, core-agnostic DPAAZ2architecture, which delivers scalable
acceleration elements sized for application needs,unprecedented efficiency, and smarter, more capable networks. When coupled
with easeof-use facilities such as real-time monitoring and debug, virtualization, and softwaremanagement utilities, the available
toolkits allow for both hardware and softwareengineers to bring a complete solution to market faster than ever.

The LX2160A integrated multicore processor combines sixteen Arm® Cortex®-A72processor cores with 24 lanes of the latest
25 GHz SerDes technology supporting highperformance Ethernet speeds (10 Gbps, 25 Gbps, 40 Gbps, 50 Gbps, and 100
Gbps) andPCl express to Gen4 (16 Gbps). With the low power of FinFET process technology andcommon network and
peripheral bus interfaces, the LX2160A is well suited fornetworking, telecom/datacom, wireless infrastructure, storage and
military/aerospaceapplications..

The LX2160A processor is supported by a consistent API that provides both basic andcomplex manipulation of the hardware
peripherals in the device, releasing the developerfrom the classic programming challenges of interfacing with new peripherals at
thehardware level.

The QorlQ LX2160A reference design board is a 1U form-factor tool for evaluation and design of value-added networking
applications such as 5G packet processing, network-function virtualization (NFV) solutions, edge computing, white box switching,
industrial applications, and storage controllers.

3.9.1 Switch settings
The following table lists and describes the switch configuration for LX2160ARDB board.

Platform Boot source SW setting

LX2160ARDB SD sw1[1~4]: 0b'1000

3.9.2 Updating target images
Use the following commands to build the images for LX2160ARDB platform:

+ Building images

cd openil

make nxp 1x2160ardb-64b defconfig
make

or make with a log

make 2>&1 | tee build.log

Uy = U r U

* Programming BL2 and RCW , BL31 and U-Boot on the SD card
Power on the LX2160ARDB board to U-Boot command environment. Then, use the commands below:

flash BL2 and RCW (for example: boot from SD card) binary
=>tftp 81000000 bl2 sd.pbl

=>mmc erase 8 0x500

=>mmc write 0x81000000 8 0x500

flash BL31 and U-Boot binary

=>tftp 81000000 fip.bin

=>mmc erase 0x800 0x2000

=>mmc write 0x81000000 0x800 0x2000

flash DDR firmware

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 45237

NXP Semiconductors

NXP OpenlL platforms

=>tftp 81000000 fip ddr.bin

=>mmc erase 0x4000 0x400

=>mmc write 0x81000000 0x4000 0x400
flash phy-ucode firmware

=>tftp 81000000 phy-ucode.txt

=>mmc erase 0x4C00 0x200

=>mmc write 0x81000000 0x4C00 0x200
flash MC firmware

=>tftp 81000000 mc.itb

=>mmc erase 0x5000 0x1800

=>mmc write 0x81000000 0x5000 0x1800
flash dpl-eth firmware

=>tftp 81000000 dpl-eth.19.dtb
=>mmc erase 0x6800 0x800

=>mmc write 0x81000000 0x6800 0x800
flash dpc-usxgmii firmware

=>tftp 81000000 dpc-usxgmii.dtb
=>mmc erase 0x7000 0x800

=>mmc write 0x81000000 0x7000 0x800
#then reset the board

» Deploying kernel and Ramdisk from TFTP

1. Set the U-Boot environment.

=>setenv bootargs ‘console=ttyAMAQO,115200 root=/dev/ram0 rw
rootwait earlycon=pl01ll,mmio32,0x21c0000"

=>saveenv

2. Boot up the system.

=>mmcinfo;mmc read $mc_fw_addr 0x05000 0x1800;mmc read S$dpc_addr 0x07000 0x800;mmc read
Sdpl addr 0x06800 0x800;fsl mc start mc Smc fw addr $dpc addr;fsl mc apply dpl $dpl addr;
=>tftp 83000000 Image

=>tftp 88000000 rootfs.cpio.uboot

=>tftp 8£f000000 fsl-1x2160a-rdb.dtb

=>booti 83000000 88000000 8£000000

3.10 i.MXS8MPEVK

The i.MX 8M Plus family is a set of NXP products focused on machine learning applications, combining state-of-art multimedia
features with high-performance processing optimized for low-power consumption. The i.MX 8M Plus Media Applications
Processor is built to achieve both high performance and low power consumption and relies on a powerful, fully coherent core
complex based on a quad Cortex-A53 cluster and Cortex-M7 low-power coprocessor, audio digital signal processor, machine
learning, and graphics accelerators.

The i.MX 8M family provides additional computing resources and peripherals:

» Advanced security modules for secure boot, cipher acceleration and DRM support

» A wide range of audio interfaces including 12S, AC97, and TDM

» Large set of peripherals that are commonly used in consumer/industrial markets including USB, PCle, and Ethernet
The i.MX 8M Plus Media Applications Processor targets applications on:

» Smart homes, buildings and cities

* Machine learning and industrial automation

» Consumer and pro-audio/voice systems

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 46 /237

NXP Semiconductors

3.10.1 Switch settings for the i. MXSMPEVK

The following table lists and describes the switch configuration for i. MX8MPEVK board:

Table 19. Switch configuration for the i.MX8MPEVK board

OpenlL supports only the SD card boot for the i.MX8MPEVK platform.

NXP OpenlL platforms

Platform

Boot source

Software setting

i.MX8MPEVK MicroSD/SDHC2

SW4[1-4] = 0b’0011

3.10.2 Updating target images

Use the following commands to build the images for i. MX8MPEVK platform:

+ Building images

Uy = 0 U

cd openil

make imx8mpevk defconfig
make

or make with a log

make 2>&1 | tee build.log

* Programming U-Boot in SD card

Power on the i.MX8MPEVK board to the U-Boot command environment, then use the following commands:

=>tftp 81000000 imx8-boot-sd.bin

=>mmc
=>mmc
#then

erase 64 0xDO0O
write 0x81000000 64 0xDOO
reset the board

» Deploying kernel and Ramdisk from TFTP

1. Boot up the system.

=>tftp 83000000 Image

=>tftp 88000000 rootfs.cpio.uboot
=>tftp 8£f000000 imx8mp-evk

=>booti 83000000 88000000 8£000000

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

471237

NXP Semiconductors

Chapter 4
Industrial features

This section provides a description of the following industrial features: NETCONF/YANG, TSN, Xenomai, IEEE 1588, OP-TEE,
and SELinux.

NOTE
For the Industrial l1oT baremetal framework, refer to
the document, /ndustrial_loT_Baremetal_Framework_Developer_ Guide available
at https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-
industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab.

4.1 Deterministic Network
Deterministic network includes Time Sensitive Networking (TSN) and IEEE 1588 (Precise Time Protocol)/802.1AS.

4.1.1 |EEE 1588/802.1AS
IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and control systems.

IEEE 802.1AS is the IEEE standard for local and metropolitan area networks — timing and synchronization for time-sensitive
applications in bridged local area networks. It specifies the use of IEEE 1588 specifications where applicable in the context of IEEE
Std 802.1D-2004 and IEEE Std 802.1Q-2005.

NXP 's QorlQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module to support
applications of IEEE 1588/802.1AS.

41.2 TSN

On the LS1021A-TSN platform, TSN features are implemented as part of the SJA1105TEL Automotive Ethernet L2 switch.
These are:

« MIl, RMII, RGMII, 10/100/1000 Mbps
« |[EEE 802.1Q: VLAN frames and L2 QoS
» |[EEE 1588v2: Hardware forwarding for one-step sync messages

» |IEEE 802.1Qci: Ingress rate limiting (per-stream policing)

IEEE 802.1Qbv: Time-aware traffic shaping
» Statistics for transmitted, received, dropped frames, buffer load

* TTEthernet (SAE AS6802)

4.2 Real Time

OpenlL support three real time world, Xenomai, Preempt-RT and Baremetal.

421 PREEMPT-RT

This option turns the kernel into a real-time kernel by replacing various locking primitives (spinlocks, rwlocks, etc.) with preemptible
priority-inheritance aware variants, enforcing interrupt threading and introducing mechanisms to break up long non-preemptible
sections. This makes the kernel, except for very low level and critical code pathes (entry code, scheduler, low level interrupt
handling) fully preemptible and brings most execution contexts under scheduler control.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 48 /237

https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab
https://www.nxp.com/support/developer-resources/nxp-designs/time-sensitive-networking-solution-for-industrial-iot:LS1021A-TSN-RD?tab=Documentation_Tab

NXP Semiconductors

Industrial features

4.2.2 Xenomai
Notice: Xenomai is not enabled in OpeniL v1.9 release.

Xenomai is a free software framework adding real-time capabilities to the mainline Linux kernel. Xenomai also provides emulators
of traditional RTOS APIs, such as VxWorks® and pSOS®. Xenomai has a strong focus on embedded systems, although it runs
over mainline desktop and server architectures as well.

Xenomai 3 is the new architecture of the Xenomai real-time framework, which can run seamlessly side-by-side Linux as a
co-kernel system, or natively over mainline Linux kernels. In the latter case, the mainline kernel can be supplemented by
the PREEMPT-RT patch to meet stricter response time requirements than standard kernel preemption would bring.

One of the two available real-time cores is selected at build time.
Xenomai can help user in:
» Designing, developing, and running a real-time application on Linux.
» Migrating an application from a proprietary RTOS to Linux.
» Optimally running real-time applications alongside regular Linux applications.

Xenomai features are supported for LS1021A-TSN, LS1043ARDB, LS1046ARDB, LS1028ARDB, and i.MX6Q SabreSD. More
information can be found at the Xenomai official website: http://xenomai.org/.

4 2.3 Baremetal

Baremetal is another real time mode, please refer to Industrial loT Baremetal Framework Developer Guide for detail.

4.3 Industrial Protocols

Many industrial protocols have been supported.

4.3.1 EtherCAT

OpenlL supports the use of EtherCAT ((Ethernet for Control Automation Technology) and integrates the IGH EtherCAT master
stack. EtherCAT support is verified on NXP’s LS1021-IoT, LS1043ARDB, LS1046ARDB, and LS1028ARDB platforms.

43.2 OPC-UA

OPC (originally known as “OLE for Process Control”, now “Open Platform Communications”) is a collection of multiple
specifications, most common of which is OPC Data Access (OPC DA).

OPC Unified Architecture (OPC UA) was released in 2010 by the OPC Foundation as a backward incompatible standard to OPC
Classic, under the name of IEC 62541.

4.3.3 FlexCAN

Both the LS1021A and LS1028A boards have the FlexCAN module. The FlexCAN module is a communication controller
implementing the CAN protocol according to the CAN 2.0 B protocol specification. The main sub-blocks implemented in the
FlexCAN module include an associated memory for storing message buffers, Receive (Rx) Global Mask registers, Receive
Individual Mask registers, Receive FIFO filters, and Receive FIFO ID filters.

43.4 NFC

The NXP’s PN7120 NFC IC integrates an ARM ™ Cortex-M0 MCU, which enables easier integration into designs, because it
requires fewer resources from the host MCU. The integrated firmware provides all NFC protocols for performing the contactless
communication in charge of the modulation, data processing and error detection.

43.5 BLE
LS1028ARDB support BLE click board, BLE P click carries the nRF8001 IC that allows user to add Bluetooth 4.0 to the device.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 49 /237

https://www.kernel.org/pub/linux/kernel/projects/rt/
http://xenomai.org/

NXP Semiconductors

Industrial features

4.3.6 BEE/ZigBEE

LS1028ARDB support BEE click board, which can implement the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver module
from Microchip.

43.7 AG-LTE

LTE is an abbreviation for Long Term Evolution. LTE is a 4G wireless communications standard developed by the 3rd Generation
Partnership Project (3GPP) that's designed to provide up to 10x the speeds of 3G networks for mobile devices such as
smartphones, tablets, netbooks, notebooks and wireless hotspots.

4.4 Security
OpenlL support OP-TEE and SeLinux for security.

44.1 OP-TEE

This section explains how to run Open Portable Trusted Execution Environment (OP-TEE) on ARM® based NXP platforms, such
as LS1021A-TSN and LS1021A-loT platforms. OP-TEE started as collaboration between ST Microelectronics and Linaro. Later,
it was made available to the open source community. It contains the complete stack from normal world client APIs (optee_client),
the Linux kernel TEE driver (optee_linuxdriver), and the Trusted OS and the secure monitor (optee_os).

442 SELinux
SELinux is a security enhancement to Linux that allows users and administrators better access control.

Access can be constrained on variables so as to enable specific users and applications to access specific resources. These
resources may take the form of files. Standard Linux access controls, such as file modes (-rwxr-xr-x) are modifiable by the user
and the applications which the user runs. Conversely, SELinux access controls are determined by a policy loaded on the system,
which are not changed by careless users or misbehaving applications.

SELinux also adds finer granularity to access controls. Instead of only being able to specify who can read, write or execute a file,
for example, SELinux lets user specify who can unlink, append only, move a file, and so on. SELinux allows user to specify access
to many resources other than files as well, such as network resources and interprocess communication (IPC).

More information can be found at official Security Enhanced Linux (SELinux) project page: https://selinuxproject.org.

4.5 Remote Management
NXP OpenlL remote management includes some important features, for example NETCONF/YANG, OTA, EdgeScale and NXP
servo (EtherCAT configuration).
451 NETCONF/YANG
* NETCONF v1.0 and v1.1 compliant (RFC 6241)
* NETCONF over SSH (RFC 6242) including Chunked Framing Mechanism
» DNSSEC SSH Key Fingerprints (RFC 4255)
* NETCONF over TLS (RFC 5539bis)
» NETCONF Writable-running capability (RFC 6241)
* NETCONF Candidate configuration capability (RFC 6241)
+ NETCONF Validate capability (RFC 6241)
* NETCONF Distinct startup capability (RFC 6241)
+ NETCONF URL capability (RFC 6241)
+ NETCONF Event Notifications (RFC 5277 and RFC 6470)

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 50/237

https://selinuxproject.org
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6242
http://tools.ietf.org/html/rfc4255
http://tools.ietf.org/html/draft-ietf-netconf-rfc5539bis-05
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6241%5D
http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc6470

NXP Semiconductors

Industrial features

+ NETCONF With-defaults capability (RFC 6243)

* NETCONF Access Control (RFC 6536)

NETCONF Call Home (Reverse SSH draft, RFC 5539bis)
NETCONF Server Configuration (IETF Draft)

.

452 OTA

OTA (Over-the-air) is a standard for the transmission and reception of application-related information in a wireless
communications system. Some NXP platforms support this this remote update, for example LS1021-loT, LS1012ARDB,
LS1043ARDB, LS1046ARDB, and LS1028ARDB.

4.5.3 EdgeScale client

EdgeScale is a unified, scalable, and secure device management solution for Edge Computing applications. It enables OEMs and
developers to leverage cloud compute frameworks like AWS Greengrass, Azure loT and Aliyun on Layerscape devices. It provides
the missing piece of device security and management needed for user to securely deploy and manage a large number of Edge
computing devices from the cloud. End-users and developers can use the EdgeScale cloud dash board to securely enroll Edge
devices, monitor their health, attest and deploy container applications and firmware updates.

4.6 Display
Some NXP platforms have integrated display and GPU module.

This section describes the high-level details of the peripherals that comprise the display on NXP chip (for example i. MX8MPEVK,
LS1028ATSN and LS1028ARDB). This peripheral is interconnected through the chip to support several application specific
solutions that include the use of ML / Al accelerator and vision.

Following display support:

* LCDIF Display Controllers
* LVDS interfaces

* HDMI interface

* DP interface

4.6.1 GPU

Both LS1028A and i.MX8MP have integrated this GPU, the chip incorporates the following Graphics Processing Unit
(GPU) features:

+ 2D/3D acceleration

* 2 shader

* Supports OpenGL ES 1.1, 2.0, 3.0
» Supports OpenCL 1.2

* Supports Vulkan

» Supports multi-source composition
* Supports one-pass filter

* Supports tile format

4.6.2 Weston

Weston is the reference implementation of a Wayland compositor, and a useful compositor in its own right. Weston has various
backends that lets it run on Linux kernel modesetting and evdev input as well as under X11.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 517237

http://tools.ietf.org/html/rfc6243
http://tools.ietf.org/html/rfc6536
http://tools.ietf.org/html/draft-ietf-netconf-reverse-ssh-05
http://tools.ietf.org/html/draft-ietf-netconf-rfc5539bis-05
http://tools.ietf.org/html/draft-kwatsen-netconf-server-01

NXP Semiconductors

Industrial features

LS1028A and i.MX8MP has the display interface, and OpenlL enable weston desktop for these two platforms.

463 QT

Qt is a full development framework with tools designed to streamline the creation of applications and user interfaces for
desktop,embedded, and mobile platforms. LS1028ARDB enables QT5 support.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 52 /237

NXP Semiconductors

Chapter 5
IEEE 1588/802.1AS

IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and control systems.

IEEE 802.1AS is the IEEE standard for local and metropolitan area networks — timing and synchronization for time-sensitive
applications in bridged local area networks. It specifies the use of IEEE 1588 specifications where applicable in the context of IEEE
Std 802.1D-2004 and IEEE Std 802.1Q-2005.

NXP 's QorlQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module to support
applications of IEEE 1588/802.1AS.

5.1 Introduction

NXP’s QorlQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module. The software
components required to run IEEE 1588/802.1AS protocol utilizing the hardware feature are listed below:

1. Linux PTP Hardware Clock (PHC) driver
2. Linux Ethernet controller driver with hardware timestamping support

3. A software stack application for IEEE 1588/802.1AS

NOTE
In this document, IEEE 1588 mentioned is IEEE 1588-2008, and IEEE 802.1AS mentioned is IEEE 802.1AS-2011.

5.2 |EEE 1588 device types
There are five basic types of PTP devices in IEEE 1588.
 Ordinary clock

A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the timescale used in the domain. It may
serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

» Boundary clock

A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains the timescale used in the domain. It may
serve as a source of time (be a master clock) or may synchronize to another clock (be a slave clock).

» End-to-end transparent clock

A transparent clock that supports the use of the end-to-end delay measurement mechanism between slave clocks and the
master clock.

* Peer-to-peer transparent clock

A transparent clock that, in addition to providing Precision Time Protocol (PTP) event transit time information, also provides
corrections for the propagation delay of the link connected to the port receiving the PTP event message. In the presence of
peer-to-peer transparent clocks, delay measurements between slave clocks and the master clock are performed using the
peer-to-peer delay measurement mechanism.

+ Management node
A device that configures and monitors clocks.
NOTE

Transparent clock, is a device that measures the time taken for a Precision Time Protocol (PTP) event message
to transit the device and provides this information to clocks receiving this PTP event message.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 537237

NXP Semiconductors

IEEE 1588/802.1AS

5.3 IEEE 802.1AS time-aware systems

In gPTP, there are only two types of time-aware systems: end stations and Bridges, while IEEE 1588 has ordinary clocks,
boundary clocks, end-to-end transparent clocks, and P2P transparent clocks. A time-aware end station corresponds to an IEEE
1588 ordinary clock, and a time-aware Bridge is a type of IEEE 1588 boundary clock where its operation is very tightly defined, so
much so that a time-aware Bridge with Ethernet ports can be shown to be mathematically equivalent to a P2P transparent clock
in terms of how synchronization is performed.

1. Time-aware end station

An end station that is capable of acting as the source of synchronized time on

the network, or destination of synchronized time using the IEEE 802.1AS protocol, or both.
2. Time-aware bridge

A Bridge that is capable of communicating synchronized time received on one

port to other ports, using the IEEE 802.1AS protocol.

5.4 linuxptp stack
Features of open source linuxptp
» Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.

» Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls, including the
clock_adjtimex system call.

» Implements Boundary Clock (BC), Ordinary Clock (OC) and Transparent Clock (TC).
» Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).
» Supports IEEE 802.1AS-2011 in the role of end station.
» Modular design allowing painless addition of new transports and clock servos.
* Implements unicast operation.
» Supports a number of profiles, including:
— The automotive profile.
— The default 1588 profile.
— The enterprise profile.
— The telecom profiles G.8265.1, G.8275.1, and G.8275.2.
— Supports the NetSync Monitor protocol.
» Implements Peer to peer one-step.
» Supports bonded, IPolB, and vlan interfaces.
Features added by OpenlL
» Supports IEEE 802.1AS-2011 in the role of time-aware bridge.
» Support dynamic direction in ts2phc to cooperate with ptp4l.

5.5 Quick Start for IEEE 1588

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 54 /237

NXP Semiconductors

IEEE 1588/802.1AS

5.5.1 Ordinary clock verification

Connect two network interfaces in back-to-back manner for two boards. Make sure there is no MAC address conflict on the
boards, the IP addresses are set properly and ping the test network. Run 1inuxptp on each board. For example, etho is used on
each board.

$ ptp4l -i eth0 -m

On running the above command time synchronization will start, and the slave linuxptp selected automatically will synchronize to
master with synchronization messages displayed, such as time offset, path delay and so on.

5.5.2 Boundary clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly and ping the test network.

Boardl (BC)

Board2 (OC) Board3 (OC)

Run 1inuxptp on Board1 (boundary clock).

$ ptp4l -i eth0 -i ethl -m

Run 1inuxptp on Board2/Board3 (ordinary clock).

S ptp4l -i eth0 -m

On running the above command, time synchronization will start, and the slaves linuxptp selected automatically will synchronize
to the unique master with synchronization messages displayed such as time offset, path delay and so on.

5.56.3 Transparent clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly, and ping the test network.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 557237

NXP Semiconductors

IEEE 1588/802.1AS

Board1 (TC)

Board2 (OC) Board3 (OC)

Run 1inuxptp on Board1 (transparent clock). If want Board1 works as E2E TC, use E2E-TC.cfg. If want Board1 works as P2P
TC, use P2P-TC.cfg.

$ ptp4l -i ethO -i ethl -f /etc/ptp4l cfg/E2E-TC.cfg -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above commands, time synchronization will start between ordinary clocks, and the slave linuxptp selected
automatically will synchronize to the master with synchronization messages displayed such as time offset, path delay and so on.

5.6 Quick Start for IEEE 802.1AS
The following sections describe the steps for implementing IEEE 802.1AS on NXP boards.

5.6.1 Time-aware end station verification

Connect two network interfaces in back-to-back way for two boards. Make sure no MAC address conflict on the boards, IP address
set properly and ping test work.

Remove below option in /etc/ptp4l_cfg/gPTP.cfg to use default larger value, because estimate path delay including PHY delay
may exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -f /etc/ptp4l cfg/gPTP.cfg -m

Time synchronization will start, and the slave linuxptp selected automatically will synchronize to master with synchronization
messages printed, like time offset, path delay and so on.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 56 /237

NXP Semiconductors

IEEE 1588/802.1AS

5.6.2 Time-aware bridge verification

At least three boards are needed for the time-aware bridge verification. Below is an example of the network connection amongst
the three boards. Make sure there is no MAC address conflict on the boards.

Boardl
(Time-aware bridge)

Board2 (end station)

Board3 (end station)

ethO

Figure 6. Setup for time-aware bridge verification

Remove the below option in /etc/ptp4l cfg/gPTP.cfq file to use the default larger value, because estimated path delay
including PHY delay may exceed 800 ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on Board1 (time-aware bridge) using the command below:

$ ptp4l -i ethO -i ethl -f /etc/ptp4l cfg/gPTP.cfg -m

Run linuxptp on Board2/Board3 (time-aware end station) using the command:

$ ptp4l -i eth0 -f /etc/ptp4l cfg/gPTP.cfg -m

Time synchronization will start between the three boards, and the linuxptp slaves selected will automatically synchronize to the
unique master with synchronization messages displayed (such as time offset, path delay and so on).

5.7 Boundary clock jpod mode on LS1028ATSN

There are several PTP devices on LS1028ATSN providing timestamping to their networking interfaces. The board was designed
to emit PPS signal from LS1028A TSN switch to three SJA1105 for PTP devices synchronization.

In order to run ptp4l on all networking interfaces with different PTP devices, the boundary_clock_jbod config is used. This option
allows ptp4l to work as a boundary clock using "just a bunch of devices" that are not synchronized to each other.

For this mode, the collection of clocks must be synchronized by an external program. The ts2phc is used here.

Configuration files for running

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 571237

NXP Semiconductors

ts2phc.cfg:

[global]
first step threshold

step threshold 0.

ts2phc.pulsewidth
ts2phc.perout phase

Felix
[/dev/ptpl]
ts2phc.master 1

SJA1105 switch 1
[/dev/ptp2]
ts2phc.channel 0
ts2phc.extts polarity

SJA1105 switch 2
[/dev/ptp3]

ts2phc.channel 0
ts2phc.extts polarity

gPTP.cfg:

#

802.1AS example configuration containing those attributes which
differ from the defaults.

0.00002
00002
500000000

both

both

complete list of available options.

See the file, default.cfq,

IEEE 1588/802.1AS

#

[global]

gmCapable 1

priorityl 248

priority2 248

logAnnouncelInterval 0

logSyncInterval =3

syncReceiptTimeout 3

neighborPropbDelayThresh 800

min neighbor prop delay -20000000

assume_ two_step 1

path trace enabled 1

follow_up info 1

transportSpecific 0x1

ptp_dst mac 01:80:C2:00:00:0E

network transport L2

delay mechanism P2P

step_threshold 0.00002

tx timestamp timeout 20

boundary clock_jbod 1

[swOpO0]

[swOpl]

[swOp2]

[swlpO]

[swlpl]

[swlp2]

[swlp3]

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 58 /237

NXP Semiconductors

IEEE 1588/802.1AS

Run boundary clock jbod mode

phc_ctl /dev/ptpl freq 0

phc_ctl /dev/ptp2 freq 0

phc _ctl /dev/ptp3 freq 0

ptp4l -f gPTP.cfg -m &

ts2phc -f ts2phc.cfg -m -a --transportSpecific 0x1

L O i i

See long term test results “Boundary clock jbod mode on LS1028ATSN”.

NOTE
1. OpenlL supports an addition '-a' option on the standard ts2phc program, which makes the program subscribe to
port state events from ptp4l, and automatically detect and synchronize the PHC devices that are not synchronized
directly by ptp4l (which are the ones that are not directly connected to the GM).

2. If -a' is used, then the transportSpecific option of ts2phc must match the one from ptp4l (similarly to phc2sys).
If gPTP is used, then transportSpecific must be 1, else it must be 0.

5.8 Long term test

This section describes the long term test results for Linux PTP stack implementation.

5.8.1 linuxptp basic synhronization
Linux PTP

Connection: back-to-back master to slave
Configuration: Sync internal is -3

Test boards: two LS1021ATSN boards, one as master and another one as slave.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

59 /237

NXP Semiconductors

IEEE 1588/802.1AS

Offset from Master, Startup

1000

80O -

10

-1000

time, [sec]

Figure 7. Offset from master in start up state

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

60/237

NXP Semiconductors

IEEE 1588/802.1AS

Offsetfrom Master, Stable State

Figure 8. Offset from master in stable state

4000

5.8.2 Boundary clock jpod mode on LS1028ATSN
Connection: LS1021A-TSN swp2 (GM) <-> LS1028A-TSN sw1p3 (slave)
Configuration: see “Boundary clock jbod mode on LS1028ATSN”

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

61/237

NXP Semiconductors

3000

IEEE 1588/802.1AS

Offset from PTF master (nangseconds)

LR |
LY {)
500 |- W S

-1000 ! L L

I
"pipdplot” ———
[}
2500

2000 |- |

1500 |

1000 |

500)

&3] 40 4 42 43

0 [e

43 40
Seconds since boot
Figure 9. ptp4l offset from master in start up state
20 | | | I, | | I |
"pip4l_plot”
15 [STl

Offs et rom PTF master (nancseconds)

o] 1000

2000

3000 4000 5000

Saconds since boot

Figure 10. ptp4l offset from master in stable state

8000 7000 2000

Booo

User's Guide

Open Industrial User Guide, Rev. 1.9, 09/2020

62 /237

NXP Semiconductors

IEEE 1588/802.1AS

a0 T T T T T T T T T]
"s2phcplot” ———

70 | P .
g0 |- f N, -

40 |- I “, -

Offset from main PHC fnanoseconds)

20 - “, —

485 47 47.5 48 435 40 495 a0 0.5 1 51.3 o2

Seconds since boot

Figure 11. ts2phc offset from master in start up state

40

I I
"t 2phc.plot™

30 | ' .

20 =

Cffset from main PHC (nanoseconds)

-20 -

L] 1000 2000 3000 4000 5000 3000 7000 2000 ooog

Seconds since boot

Figure 12. ts2phc offset from master in stable state

Since the sja1105 PTP clock resolution is 8 ns, the ts2phc offset is always a multiple of that (0, 8, 24 ns).

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 63 /237

NXP Semiconductors

IEEE 1588/802.1AS

5.9 Known issues and limitations

1. When LS1028A TSN switch in Linux is configured as L2 switch, the interfaces should not be configured with IP addresses.
Running linuxptp on these interfaces must use Ethernet protocol instead of UDP/IP. The method is to add an option “-2” executing
ptp4l command. For example,

$ ptp4l -i ethO -2 -m

2. i.MX8MP current dwmac driver (eth1) initializes some hardware functions during opening net device, including PTP
initialization. Before that, the operations on it may not work, like ethtool queries, and PTP operations. So, the workaround
is, do operations on the eth1 and PTP of dwmac only after "ifconfig eth1 up".

3. If below error is reported during ptp4l running, just try to increase tx_timestamp_timeout. User space may need to wait longer
for TX timestamp. For example, use option --tx_timestamp_timeout=20 when run ptp4l.

ptp4l1[1560.726]: timed out while polling for tx timestamp
ptp41[1560.726]: increasing tx timestamp timeout may correct this issue, but it is likely caused by a
driver bug

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 64 /237

NXP Semiconductors

Chapter 6
Time Sensitive Network (TSN)

Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards compatible with
IEEE 802.1 and 802.3. These extensions are intended to address the limitations of standard Ethernet in sectors ranging from
industrial and automotive applications to live audio and video systems.Applications running over traditional Ethernet must be
designed very robust in order to withstand corner cases such as packet loss, delay or even reordering. TSN aims to provide
guarantees for deterministic latency and packet loss under congestion, allowing critical and non-critical traffic to be converged in
the same network.

This chapter describes the process and use cases for implementing TSN features on the LS1021ATSN and the
LS1028ARDB boards.

6.1 TSN hardware capability

Table 20. TSN hardware capability on different platforms

Platform | 802.1Qbv(Enhancemen | 802.1Qbu and |802.1Qav(Credit | 802.1AS(Precisi | 802.1CB(Frame | 802.1Qci(Per
ts for Scheduled 802.3br(Frame | Based Shaper) |on Time Replication and | Stream Filtering
Traffic) Preemption) Protocol) Elimination for | and Policing)
Reliability)
ENETC(|Y Y Y Y N Y
LS1028a
)
Felix Y Y Y Y Y Y
switch(L
S1028a)
SJA110 |Y N Y Y N Pre-standard
5(LS102
1a-TSN)
Stmac(i. |Y Y Y Y N N
mx8mp)
6.2 TSN configuration
The table below describes the TSN configuration tools support on different platforms
Table 21. TSN configuration tools support on different platforms
Platform 802.1Qbv 802.1Qbu and |802.1Qav 802.1AS 802.1CB 802.1Qci (Per
(Enhancements | 802.3br (Credit Based | (Precision (Frame Stream Filtering and
for Scheduled (Frame Shaper) Time Protocol) | Replication and | Policing)
Traffic) Preemption) Elimination for
Reliability)
ENETC tc-taprio ethtool tc-cbs ptp4l N tc-flower
(LS1028A) tsntool tsntool tsntool tsntool
Felix switch tc-taprio ethtool tc-cbs ptp4l tsntool tc-flower
(LS1028A) tsntool tsntool tsntool tsntool
Table continues on the next page...
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 65/237

NXP Semiconductors

Time Sensitive Network (TSN)

Table 21. TSN configuration tools support on different platforms (continued)

Platform 802.1Qbv 802.1Qbu and |802.1Qav 802.1AS 802.1CB 802.1Qci (Per
(Enhancements | 802.3br (Credit Based | (Precision (Frame Stream Filtering and
for Scheduled (Frame Shaper) Time Protocol) | Replication and | Policing)

Traffic) Preemption) Elimination for
Reliability)

SJA1105 tc-taprio N tc-cbs ptp4l N tc-flower

(LS1021A-

TSN)

Stmac tc-taprio ethtool tc-cbs ptp4l N N

(i.mx8mp)

6.2.1 Using Linux traffic control (tc)

Enable following configs in kernel when using Linux traffic control (tc):

Symbol: NET SCH MQPRIO [=y] && NET SCH CBS [=y] && NET SCH TAPRIO [=y]

[*] Networking support --->
Networking options --->
[*] QoS and/or fair queueing --->

<* > Credit Based Shaper (CBS)

<F> Time Aware Priority (taprio) Scheduler

<F> Multi-queue priority scheduler (MQPRIO)
[#] Actions —-——>

LE> Traffic Policing

<F> Generic actions

<F> Redirecting and Mirroring

<F> SKB Editing

<F> Vlan manipulation

<*k> Frame gate entry list control tc action

On Is1028a platform, ENETC Qos driver need to be set to support tc configuration.

Symbol: FSL ENETC QOS [=y]

Device Drivers--->
M1 Network device support --->
] Ethernet driver support --->
=] Freescale devices
%] ENETC hardware Time-sensitive Network support

1. Using tc-taprio to set Qbv, detail introduce is here:
https://man7.org/linux/man-pages/man8/tc-taprio.8.html

2. Using tc-cbs to set Qav, detail introduce is here:
https://man7.org/linux/man-pages/man8/tc-cbs.8.html

3. Using tc-flower to set Qci and ACL, detail introduce is here:

https://man7.org/linux/man-pages/man8/tc-flower.8.html

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 66 /237

https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://man7.org/linux/man-pages/man8/tc-flower.8.html

NXP Semiconductors

Time Sensitive Network (TSN)

6.2.2 Using tsntool

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. It's used on LS1028a platform,
so enable TSN, ENETC_TSN, and MSCC_FELIX_SWITCH_TSN to support tsntool configuration on LS1028a.

Symbol: TSN [=y]
[*] Networking support --->
Networking options --->
[*] 802.1 Time-Sensitive Networking support

Symbol: ENETC TSN [=y] && FSL ENETC PTP CLOCK [=y] && FSL_ENETC HW TIMESTAMPING [=y]
Device Drivers --->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices

LE> ENETC PF driver

LE> ENETC VF driver

= ENETC MDIO driver

<*k> ENETC PTP clock driver

[*] ENETC hardware timestamping support
[*] TSN Support for NXP ENETC driver

Symbol: MSCC FELIX SWITCH TSN [=y]

Device Drivers --->
[*] Network device support --->
Distributed Switch Architecture drivers --->
<*> Ocelot / Felix Ethernet switch support --->

<E> TSN on FELIX switch driver

Enable PKTGEN in Kernel to use pktgen for testing,

Symbol: NET PKTGEN [=y]
[*] Networking support --->
Networking options --->
Network testing --->
<*> Packet Generator (USE WITH CAUTION)

See "Tsntool User Manual" to get detail information.

6.2.3 Remote configuration using NETCONF/YANG

1. Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and modification. It uses a
remote procedure call (RPC) paradigm and a system of exposing device (server) capabilities, which enables a client to adjust to
the specific features of any network equipment.

YANG is a standards-based, extensible, hierarchical data modeling language that is used to model the configuration and state
data used by NETCONF operations, remote procedure calls (RPCs), and server event notifications.

2. Support for different platforms in OpenlL

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 67 /237

NXP Semiconductors

Time Sensitive Network (TSN)

TSN offload OpenlL
LS1028 SJA1105 i.MX8MP
libtsn tc tc tc
802.1Qbv (Time Y Y Y Y

Aware Shaper)

802.1Qbu/802.3br Y Y - Y
(Frame Preemption)

802.1Qav (Credit - - - -
Based Shaper)

802.1CB (Frame - - N/A -
Replication

and Elimination
for Reliability)

802.1Qci (Per-Stream |Y Y Y -
Filtering and Policing)

IP config

MAC config

VLAN config

<| <[=<]=

VLAN modification -

3. Installation and Configuration

Netopeer is a set of NETCONF tools built on the libnetconf library. sysrepo-tsn (https://github.com/openil/sysrepo-tsn) helps

to configure TSN features, including Qbv, Qbu, Qci, and stream identification via network, without logging in to device.For
details of configuring TSN features via Netopeer, please refer to NETCONF/YANG). Some application scenarios for tsn refer to
Application scenarios.

6.2.4 Remote configuration using Web Ul

1. Overview

The Web Ul allows the remote control of the YANG model. The user can connect http server, and input TSN parameter on web
Ul, and click "Yes, confirm" button to send them to the board.

2. User Interface

2.1 Qbv Configuration

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 68 /237

https://github.com/openil/transAPI

NXP Semiconductors

Time Sensitive Network (TSN)

ADD TSN SETTING @

console output

lgetconfig operation: true

®@enable Odisable

basetime: III example: s.ns

*gate control list:

GATE PERIOD

R T O

| ==

lgetconfig operation: true

jgetconfig operation: true

2

leditconfig operation: true

{

STATUS | Get Config |

"interfaces":{
"@xmlns":"urn:ietf:params:xml:ns:yang:ietf-interfaces"”,
"interface":{

"name":"swp2",

"enabled":"true",

"type":{
"@xmlns:ianaift":"urn:ietf:params:xml:ns:yang:iana-if-type",
"#text":"ianaift:ethernetCsmacd”

Ty

"gate-parameters”:{
"@xmlns":"urn:ieee:std:802.1Q:yang:ieee802-dotlg-sched",
"gate-enabled"
"config-change
"admin-control-list-length":"1",
"admin-control-list":{

"index":"0",

"operation-name

"sgs-params™:{
"gate-states-value™:"3",
"time-interval-value

set-gate-states”,

2.2 Qbu Configuration

ADD TSN SETTING @

gbu

*device:

@enable Odisable

TC0 Opreemptable ®express
TC1 Opreemptable ®express
TC2 Opreemptable ®express
TC3 ®preemptable Oexpress
TC4 Opreemptable ®express
TC5 Opreemptable ®express
TC6 ®preemptable Oexpress
TC7 Opreemptable ®express

| [ez=]

STATUS | Get Config

= T
"gate-states-value":
"time-interval-value":

}

"admin-base-time": {
"seconds":"0",
"fractional-seconds":"0"
}
T
"frame-preemption-parameters": {
"@xmlns":"urn:ieee:std:802.1Q:yang:ieeeB02-dotlg-preemption”,
"frame-preemption-status-table": [
{
"traffic-class":"0",
"frame-preemption-status":"express"

"traffic-class":"1",
"frame-preemption-status":"express”

"traffic-class":"2",
"frame-preemption-status":"express"

"traffic-class":"3",
"frame-preemption-status":"preemptable”

"traffic-class":"4",
"frame-preemption-status":"express”

"traffic-class":"5",
"frame-preemption-status":"express"

Mtrafficoclaag"-"G"

2.3 Qci Configuration

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

69 /237

NXP Semiconductors

Time Sensitive Network (TSN)

jconsole output
ADD TSN SETTING @ etconfig operation: true

:

etconfig operation: true
* .- V]

etconfig operation: true

stream gate |V| ,

@enable Odisable editconfig operation: true

*index: {

initial gate state:®open Oclose

"interfaces™:{
"@xmlns":"urn:ietf:params:xml:ns:yang:ietf-interfaces”,

initial ipv:m " lntefface : :£ o
) name":"swp2",
basetlme:m "enabled":"true",

"type”: |
"@xmlns:ianaift":"urn:ietf:params:xml:ns:yang:iana-if-type",
"#text":"ianaift:ethernetCsmacd"

Oopen ®close

period: , ipv: .

"gate-enabled™:"true",

"config-change”:"true",
"admin-control-list-length™:"1",
"admin-control-list":{

"index":"0",
"operation-name":"set-gate-states",

"gate-states-value":"3",
) "time-int 1-value":"4000"
STATUS | Get Config I 2 ime-interval-value

1

Ty
"gate-parameters": {
"@xmlns":"urn:ieee:std:802.1Q:yang:ieeeB02-dotlg-sched",

In this interface, user can choose configuration for "stream identify", "stream filter", "stream gate" and "flow metering".

3. Installation and Configuration

For details introduction of web Ul, please refer to Web Ul demo.

6.3 Verifying TSN features on LS1028ARDB board

The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files /usr/bin/tsntool
and /ustr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

6.3.1 Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document describes how
to use tsntool for NXP's LS1028ARDB hardware platform.

NOTE
» Tsntool supports only the LS1028ARDB platform. Other hardware platforms might be supported in future.

» Current tsntool binary and lib are default for kernel version v4.19. If you want to use kernel v4.13, you need
to clone the tsntool source code, and compile the tag point v0.2 source code.

6.3.1.1 Getting the source code
Github of the tsntool code is:

https://github.com/openil/tsntool.git

6.3.1.2 Tsn tool commands

The following table lists the TSN tool commands and their description.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 70/ 237

https://github.com/openil/tsntool.git

NXP Semiconductors

Table 22. TSN tool commands and their description

Time Sensitive Network (TSN)

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

gbvset Sets time gate scheduling config for <i fname>

gbvget Gets time scheduling entries for <i fname>

cbstreamidset Sets stream identification table

cbstreamidget Gets stream identfication table and counters

qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

gcisgiset Sets stream gate instance

gcisgiget Gets stream gate instance

qcisficounterget Gets stream filter counters

qcifmiset Sets flow metering instance

qcifmiget Gets flow metering instance

cbsset Sets TCs credit-based shaper configure

cbsget Gets TCs credit-based shaper status

gbuset Sets one 8-bits vector showing the preemptable traffic class
gbugetstatus Not supported

tsdset Not supported

tsdget Not supported

ctset Sets cut through queue status (specific for Is1028 switch)
cbgen Sets sequence generate configure (specific for Is1028 switch)
cbrec Sets sequence recover configure (specific for Is1028 switch)
dscpset Sets queues map to DSCP of Qos tag (specific for Is1028 switch)
sendpkt Not supported

Table continues on the next page...
Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 717237

NXP Semiconductors

Time Sensitive Network (TSN)

Table 22. TSN tool commands and their description (continued)

Command Description
regtool Register read/write of bar0 of PFs (specific for 1s1028 enetc)
ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time

ptptool -g

#get ptpl clock time

ptptool -g -d /dev/ptpl
dscpset Set queues map to DSCP of QoS tag (specific for Is1028 switch)
gcicapget Gets qci instance's max capability
tsncapget Gets device's tsn capability

6.3.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 23. gbvset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--entryfile <filename>

A file script to input gatelist format. It has the following arguments:
#'NUMBER' 'GATE VALUE' 'TIME LONG'
* NUMBER: #'t' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

* GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB
corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.

* TIME_LONG: # nanoseconds. Do not input 0 time long. t0 11101111b 10000 t1
11011111b 10000

NOTE
Entryfile parameter must be set. If not set, there will be a vi text editor
prompt, "require to input the gate list".

--basetime <value>

AdminBaseTime
A 64-bit hex value means nano second until now.
OR a value input format as: seconds.decimalSecond

Example: 115.000125means 115seconds and 125us.

--cycletime <value>

AdminCycleTime

--cycleextend <value>

AdminCycleTimeExtension

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

721237

NXP Semiconductors

Table 23. gbvset (continued)

Time Sensitive Network (TSN)

Parameter <argument>

Description

--enable | --disable

» enable: enables the gbv for this port
+ disable: disables the qbv for this port

Default is set to enable, if no enable or disable input

--maxsdu <value>

queueMaxSDU

--initgate <value>

AdminGateStates

--configchange ConfigChange. Default set to 1.
--configchangetime <value> | ConfigChangeTime
Table 24. gbvget

Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

Table 25. cbstreamidset

Parameter <argument>

Description

--enable | --disable

» enable: Enables the entry for this index.

« disable: Disables the entry for this index. Default is set to enable if no enable or
disable input

--index <value>

Index entry number in this controller. Mandatory parameter.

This value corresponds to tsnstreamIdHandle on switch configuration.

--device <string>

An interface such as eno0/swp0

--streamhandle <value>

tsnStreamldHandle

--infacoutport <value>

tsnStreamldinFacOutputPortList

--outfacoutport <value>

tsnStreamldOutFacOutputPortList

--infacinport <value>

tsnStreamldinFaclnputPortList

--outfacinport <value>

tsnStreamldOutFaclnputPortList

--nullstreamid | --

| --ipstreamid

sourcemacvid | --destmacvid

tsnStreamldldentificationType:
 -nullstreamid:Null Stream identification
» -sourcemacvid: Source MAC and VLAN Stream identification

+ -destmacvid: not supported

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

731237

NXP Semiconductors

Time Sensitive Network (TSN)

Table 25. cbstreamidset (continued)

Parameter <argument>

Description

* -ipstreamid: not supported

--nulldmac <value>

tsnCpeNullDownDestMac

--nulltagged <value>

tsnCpeNullDownTagged

--nullvid <value>

tsnCpeNullDownVlan

--sourcemac <value>

tsnCpeSmacVlanDownSrcMac

--sourcetagged <value>

tsnCpeSmacVlanDownTagged

--sourcevid <value>

tsnCpeSmacVlanDownVlan

Table 26. cbstreamidget

P

arameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controler. Mandatory to have.

Table 27. qcisfiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--enable | --disable

+ enable: enable the entry for this index
« disable: disable the entry for this index

+ default to set enable if no enable or disable input

--maxsdu <value>

Maximum SDU size.

--flowmeterid <value>

Flow meter instance identifier index number.

--index <value>

StreamFilterinstance. index entry number in this controler.

This value corresponds to tsnStreamIdHandle Of cbstreamidset command on
switch configuration.

--streamhandle <value>

StreamHandleSpec

This value corresponds to tsnStreamIdHandle Of cbstreamidset command.

--priority <value>

PrioritySpec

--gateid <value>

StreamGatelnstancelD

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

741237

NXP Semiconductors

Table 27. qcisfiset (continued)

Time Sensitive Network (TSN)

Parameter <argument>

Description

--oversizeenable

StreamBlockedDueToOversizeFrameEnable

--oversize

StreamBlockedDueToOversizeFrame

Table 28. qcisfiget

parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

Table 29. qcisgiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

--enable | --disable

» enable: enable the entry for this index. PSFPGateEnabled
+ disable: disable the entry for this index

+ default to set enable if no enable or disable input

--configchange configchange

--enblkinvrx PSFPGateClosedDueTolnvalidRxEnable
--blkinvrx PSFPGateClosedDueTolnvalidRx
--initgate PSFPAdminGateStates

--initipv AdminIPV

--cycletime Default not set. Get by gatelistfile.

--cycletimeext

PSFPAdminCycleTimeExtension

--basetime

PSFPAdminBaseTime
A 64-bit hex value means nano second until now.
OR a value input format as: seconds.decimalSecond

Example: 115.000125means 115seconds and 125us.

--gatelistfile

PSFPAdminControlList. A file input the gate list: ' NUMBER' 'GATE_VALUE' 'IPV'
'TIME_LONG' 'OCTET_MAX'

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

751237

NXP Semiconductors

Table 29. qcisgiset (continued)

Time Sensitive Network (TSN)

Parameter <argument>

Description

* NUMBER: #'t' or 'T' head. Plus entry number. Duplicate entry number will result in an error.

* GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds
to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.

* IPV:#0~7

« TIME_LONG: in nanoseconds. Do not input time long as 0.

+ OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If zero,
there is no maximum. t0 1b -1 50000 10

Table 30. qcisgiget

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

Table 31. qcifmiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.
--cir <value> cir. kbit/s.

--cbs <value> cbs. octets.

--eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.
--cm cm. color mode.
--dropyellow drop yellow.

--markred_enable

mark red enable.

--markred

mark red.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

76/237

NXP Semiconductors

Table 32. qcifmiget parameter

Time Sensitive Network (TSN)

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

Table 33. gbuset parameter

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--preemptable <value>

8-bit hex value. Example: Oxfe The MS bit corresponds to traffic class 7.

The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1
indicates preemptable.

Table 34. cbsset command

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--tc <value>

Traffic class number.

--percentage <value>

Set percentage of tc limitation.

--all <tc-percent:tc-percent...> | Not supported.
Table 35. cbsget
Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

--tc <value>

Traffic class number.

Table 36. regtool

Parameter <argument>

Description

Usage: regtool { pf number }
{ offset } [data]

pf number: pf number for the pci resource to act on

offset: offset into pci memory region to act upon

data: data to be written

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

771237

NXP Semiconductors

Time Sensitive Network (TSN)

Table 37. ctset

Parameter <argument> Description
--device <ifname> An interface such as swp0
--queue_stat <value> Specifies which priority queues have to be processed in cut-through mode of operation. Bit 0

corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 38. cbgen

Parameter <argument> Description
--device <ifname> An interface such as swp0
--index <value> Index entry number in this controller. Mandatory to have.

This value corresponds to tsnStreamIdHandle Of cbstreamidset command.

--iport_mask <value> INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value> SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

--seq_len <value> SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.
tsnSegGenSpace = 2**SEQ SPACE LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

--seq_num <value> GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.

Note: Only lower 16-bits are sent in RED_TAG.

Table 39. cbrec

Parameter <argument> Description
--device <ifname> An interface such as swp0
--index <value> Index entry number in this controller. Mandatory to have.

This value corresponds to tsnStreamIdHandle Of cbstreamidset command.

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.
tsnSeqRecSegSpace = 2**SEQ REC_SPACE_LOG2

For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag_pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 781237

NXP Semiconductors

Table 40. dscpset

Time Sensitive Network (TSN)

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--disable Disable DSCP to traffic class for frames.
--index DSCP value

--COs Priority number of queue which is mapped to
--dpl Drop level which is mapped to

Table 41. qcicapget

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

Table 42. tsncapget

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

6.3.1.4 Input tips

While providing the command input, user can use the following shortcut keys to make the input faster:

* When user input a command, use the TAB key to help list the related commands.

For example:

tsntool> gbv

Then press TAB key, to get all related gbv* start commands.

If there is only one choice, it is filled as the whole command automatically.

* When user input parameters, if user does nott remember the parameter name. User can just input “--” then press TAB
key. It displays all the parameters.

If user input half the parameter’s name, pressing the TAB key lists all the related names.

« History: press the up arrow “1” . User will get the command history and can re-use the command.

6.3.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.

For example:

In the interactive mode:

tsntool> gbuset --device eno0 --preemptable Oxfe

In non-interactive mode:

tsntool gbuset --device eno0 --preemptable Oxfe

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

791237

NXP Semiconductors

Time Sensitive Network (TSN)

6.3.2 TSN configuration on ENETC

The tsntool is an application configuration tool to configure the TSN capability. User can find the file, /usr/bin/tsntool
and /usr/lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following sections describe the TSN
configuration examples on the ENETC ethernet driver interfaces.

Before testing the ENETC TSN test cases, user need to enable mgprio by using the command:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

6.3.2.1 Clock synchronization
To test 1588 synchronization on ENETC interfaces, use the following procedure:
1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)

The linux booting log is as follows:

pps ppsO: new PPS source ptp0

2. Check PTP clock and timestamping capability:

ethtool -T enoO
Time stamping parameters for eno0:

Capabilities:
hardware-transmit (SOF TIMESTAMPING TX HARDWARE)
hardware-receive (SOF TIMESTAMPING RX HARDWARE)
hardware-raw-clock (SOF_TIMESTAMPING RAW HARDWARE)

PTP Hardware Clock: O
Hardware Transmit Timestamp Modes:

off (HWTSTAMP TX OFF)

on (HWTSTAMP_TX_ ON)Hardware Receive Filter Modes:
none (HWTSTAMP FILTER NONE)

all (HWTSTAMP_ FILTER ALL)

3. Configure the IP address and run ptp41 on two boards:

ifconfig eno0 <ip addr>
ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gpTP.cfg in linuxptp source. Run the below command on the
boards, instead:

ptp4l -i eno0 -p /dev/ptp0 -f gPTP.cfg -m

6.3.2.2 Qbv

This test includes the Basic gates closing test, Basetime test, and the Qbv performance test. These are described in the
following sections.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 80/237

NXP Semiconductors

6.3.2.2.1

Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > gbv0.txt << EOF

t0 00000000b 20000
EOF

#Explanation:

'NUMBER' B t0

'GATE_VALUE' g 00000000b

'TIME LONG' 8 20000 ns

cp libtsn.so /lib
./tsntool

tsntool>
tsntool>

verbose
gbvset --device eno0 --entryfile ./gbv0.txt

ethtool -S eno0

ping 192

6.3.2.2.2

.168.0.2 -c 1 #Should not pass any frame since gates are all off.

Basetime test

Base on case 1 gbvl.txt gate list.

#create 1ls gate
cat > gbvl.txt << EOF

t0 11111111b 10000

tl 00000000b 99990000
EOF

tsntool> regtool 0 0x18

tsntool>

regtool 0 0Oxlc

#read the current time

tsntool>

ptptool -g

Time Sensitive Network (TSN)

#add some seconds, for example, user gets 200.666 time clock, then set 260.666 as result

tsntool>
tsntool>
tsntool>

#Waiting
ping 192

gbvset --device eno0O --entryfile gbvl.txt --basetime 260.666
gbvget --device eno0 #User can check configchange time
regtool 0 0x11al0 #Check pending status, 0xl means time gate is working

to change state, ping remote computer
.168.0.2 -A -s 1000

#The reply time will be about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192

6.3.2.2.3

.168.0.2 -c 1 -s 1300 #frame should not pass

Qbv performance test

Use the setup described in the figure below for testing ENETC port0 (MACO).

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

81/237

NXP Semiconductors

Time Sensitive Network (TSN)

sweoj
(swp0) PO
SWp1
LS1028ARDB (swpl) P1
swp2
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4) Test Center
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS e1000 TFTP/BOOT
network

Figure 13. Setup for testing ENETC port0

cat > gbvb.txt << EOF

t0 11111111b 1000000
tl 00000000b 1000000
EOF

gbvset --device eno0O --entryfile gbv5.txt
./pktgen/pktgen twoqueue.sh -i eno0 -g 3 -n 0

#The stream would get about half line rate

6.3.2.2.4 Using taprio Qdisc Setup Qbv
LS1028ardb support the taprio qdisc to setup Qbv either. Below is an example Setup.

#Qbv test do not require the mgprio setting.
If mgprio is enabled, try to disable it by below command:
tc gdisc del dev eno0 root handle 1: mgprio

Enable the Qbv for ENETC eno0O port

Below command set eno0O with gate 0x01l, means queue 0 open, the other queues gate close.

tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1
1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 01 300000 flags 0x2

Ping through eno0 port should be ok

Then close the gate queue 0. Open gate queue 1. The other queues gate close.

tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map O 1 2 3 4 5 6 7 queues 1@0 1@1
1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2

Ping through eno0 port should be dropped

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 82/237

NXP Semiconductors

Time Sensitive Network (TSN)

#Disable the Qbv for ENETC eno0 port as below
tc gdisc del dev eno0 parent root handle 100 taprio

6.3.2.3 Qci
Use the following as the background setting:

* Set eno0 MAC address

ip link set eno0O address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.

* Use the figure below as the hardware setup.

SWPO
(swp0) PO
SwWp1
LS1028ARDB (swpl) P1
swp2
(swp2) P2
SwWp3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4) Test Center
(enol) enetc 1 |3X
MACO
(eno0) enetc 0
PCI BUS 1000 TFTP/BOOT
network
Figure 14. Qci test case setup

6.3.2.3.1 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module which means streams without mac address and vid filter. Such
kind of filter setting always set larger index number stream filter entry. Those frames won't be fitlered then flow into this stream
filter entry.

Below example test no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream entry id 2. Then
none stream identifies frames would flow into the stream filter entry index 2 then pass the gate entry index 2, as shown in the
following example:

tsntool> gcisfiset --device eno0 --index 2 --gateid 2

» Streams no streamhandle should pass this filter.

tsntool> gcisfiget --device eno0 --index 2

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 837237

NXP Semiconductors

Time Sensitive Network (TSN)

» Send a frame from the opposite device port (ping for example).
tsntool> gcisfiget --device eno0 --index 2
» Set Stream Gate entry 2
tsntool> gcisgiset --device eno0 --index 2 --initgate 1
* Send a frame from the opposite device port.
tsntool> gcisfiget --device eno0 --index 2
» Set Stream Gate entry 2, gate closes permanently.
tsntool> gcisgiset --device eno0 --index 2 --initgate O
» Send a frame from the opposite device port.

tsntool> gcisfiget --device eno0 --index 2

#The result should look like below:

match pass gate drop sdu pass sdu drop red
1 0 1 1 0 0

6.3.2.3.2 Testing null stream identify entry
Null stream identify in stream identify module means try to filter as destination mac address and vlan id.

Following steps shows stream identify entry index 1 set with filtering destination mac address is 10:00:80:00:00:00, vlan id
ignored(with or witout vland id). Then stream filter set on the entry index 1 with stream gate index entry id 1.

1. Set main stream by close gate.

2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.
tsntool> cbstreamidget --device eno0 --index 1
4. Set Stream filer entry 1 with stream gate entry id 1.
tsntool> gcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1
5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask user for editing gate list).
tsntool> gcisgiset --device eno0 --index 1 --initgate 0
6. Send one frame from the opposite device port should pass to the close gate entry id 1.
tsntool> gcisfiget --device eno0 --index 1
7. The result should look like the output below:

match pass gate drop sdu pass sdu drop red
101100

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 84 /237

NXP Semiconductors

Time Sensitive Network (TSN)

6.3.2.3.3 Testing source stream identify entry
Source stream identify means stream identify the frames by the source mac address and vlan id.
Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.

2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not with destination mac
address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac address)

3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid --sourcemac 0x112233445566 --
sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> gcisfiget --device eno0 --index 1

6.3.2.3.4 SGIl stream gate list

Use the command below for this test:

cat > sgil.txt << EOF

t0 0Ob -1 100000000 O

tl 1b -1 100000000 O

EOF

tsntool> gcisfiset --device eno0 --index 2 --gateid 2

tsntool> gcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgil.txt

#flooding frame size 64bytes from opposite device port. (iperf or netperf as example)
tsntool> gcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open and 100ms
close periodically.

6.3.2.3.5 FMI test
Only send green color frames(Normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the eno0 port speed to

10000kbsp/s:

tsntool> gcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 5000

‘cm' parameter set color mode enable means frames seperate green frames and yellow frames judged by the TCI bit in frame. Or
else, any frames are green frames.

'cf parameter set the coupling flag enable. When CF is set to 0, the frames that are declared yellow is bounded by EIR. When
CF is set to 1, the frames that are declared Yellow is bounded by CIR + EIR depending on volume of the offered frames that are
declared Green.

After upper commands setup, since green frames not larger than EIR + CIR 10Mbit/s. So the green frame would not be dropped.

The below setting shows the dropped frames:

tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs 1500 --eir 2000

This case makes the grean frames pass 5Mbit/s in CIR, then it pass to the EIR space, but EIR is 2Mbit/s, so total EIR + CIR 7Mbit/s
still not qualify the total 10Mbit/s bandwidth. So green frame would be dropped part.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 85/237

NXP Semiconductors

Time Sensitive Network (TSN)

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> gcifmiget --device enoO --index 2

bytecount drop dr0 green drl green dr2 yellow remark yellow dr3 red remark red
1c89 0 4c 0 0 0 0 O

index = 2
cir = c34c
cbs = bdc
eir = 4c4b3c
ebs = 5dc

couple flag
color mode

6.3.24 Qbu

If user has two Is1028ardb boards, and link the two eno0 back to back, the test would not need to setup the switch and omit the
step 1,2,3, then just perform step 0,4,5.

If user has only one board, user can set the frame path from eno0 to switch by linking enetc ports MACO - SWPO. The setup enable
the switch SWPO port merging capability, then enetc eno0 could show the preemption capability. Use the setup as shown in the
following figure for the Qbu test.

SWP0
(swpO) PO
SwP1
swpl) P1
LS1028ARDB (swpl) . Test Center
(swp2) P2
Swp3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swpb5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCI BUS

Figure 15. Qbu test

Before link the cable between ENETC port0 to SWPO, set up the switch up(refer the Switch configuration) and set IP for ENETC
port0. To make sure linking the ENETC port0 to SWPO0, use the steps below:

0. Don't forget to enabling the priority for each traffic class:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 86 /237

NXP Semiconductors

Time Sensitive Network (TSN)

1. Make sure link speed is 1 Gbps by using the command:

ethtool eno0
2. Ifitis not 1Gbps, set it to 1 Gbps by using the command:

ethtool -s swpO speed 1000 duplex full autoneg on
3. Set the switch to enable merge(or user can link to another merge capability port in another board):

devmem 0x1£c100048 32 Ox111 #DEV GMII:MM CONFIG:ENABLE CONFIG
4. ENETC port setting set and frame preemption test

ip link set eno0O address 90:e2:ba:ff:ff:ff

tsntool gbuset --device eno0 --preemptable Oxfe

./pktgen/pktgen twoqueue.sh -i eno0 -g 0 -s 100 -n 20000 -m 90:e2:ba:ff:ff:ff

pktgen would fluding frames on TCO and TC1.

5. Check the tx merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11£f18

NOTE
0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC MERGE MMFCTXR)

6.3.2.5 Qav

6.3.2.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 871237

NXP Semiconductors

Time Sensitive Network (TSN)

SWPO
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
SWP2
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swpd) Test Center
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCI BUS e1000 TFTP/BOOT
network

Figure 16. Qav test setup

0. Don't forget to enabling the priority for each traffic class:

tc gdisc add dev eno0O root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

cbsset --device eno0 --tc 7 --percentage 60
cbsset --device eno0 --tc 6 --percentage 20

2. Check each queue bandwidth (pktgen require enabling NET_PKTGEN in kernel)
./pktgen/pktgen sample0l simple.sh -i eno0 -g 7 -s 500 -n 30000

wait seconds later to check result. It should get about 60% percentage line rate.
./pktgen/pktgen sample0l simple.sh -i eno0 -g 6 -s 500 -n 30000

Wait seconds later to check result. It should get about 20% percentage line rate.

6.3.2.5.2 Using CBS Qdisc Setup Qav

LS1028a support the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100Mbit/s for queue 7 and
300Mbit/s for queue 6.

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

tc gdisc replace dev enoO parent 1:8 cbs locredit -1470 hicredit 30 sendslope -900000 idleslope
100000 offload 1

tc gdisc replace dev eno0O parent 1:7 cbs locredit -1470 hicredit 30 sendslope -700000 idleslope
300000 offload 1

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 88/237

NXP Semiconductors

Try to flood stream here (require kernel enable NET_ PKTGEN)
./pktgen/pktgen_sample0l simple.sh -i eno0 -g 7 -s 500 -n 20000
./pktgen/pktgen sample0l simple.sh -i eno0 -g 6 -s 500 -n 20000
tc gdisc del dev eno0 parent 1:7 cbs

tc gdisc del dev eno0 parent 1:8 cbs

6.3.3 TSN configuration on Felix switch

The following sections describe examples for the basic configuration of TSN switch.

6.3.3.1 Linux switch configuration

Time Sensitive Network (TSN)

SWP0
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
SWP2
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS

Figure 17. TSN switch configuration

Test Center

Use the following commands for configuring the switch on LS1028ARDB:

1s /sys/bus/pci/devices/0000:00:00.5/net/
Get switch device interfaces: swp0 swp1 swp2 swp3>

ifconfig eno2 up

ip link add name switch type bridge

ip link set switch up

ip link set swpO master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

6.3.3.2 Clock synchronization

To test 1588 synchronization on felix-switch interfaces, use the following procedure:

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

89 /237

NXP Semiconductors

Time Sensitive Network (TSN)

1. Connect two boards back-to-back with switch interfaces. For example, swp0 to swp0.

The Linux booting log is displayed below:
pps ppsO: new PPS source ptpl
2. Check PTP clock and timestamping capability

$ ethtool -T swp0
Time stamping parameters for swpO:

Capabilities:
hardware-transmit (SOF TIMESTAMPING TX HARDWARE)
hardware-receive (SOF TIMESTAMPING RX HARDWARE)

hardware-raw-clock (SOF TIMESTAMPING RAW HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:

off (HWTSTAMP TX OFF)

on (HWTSTAMP TX_ ON)
Hardware Receive Filter Modes:

none (HWTSTAMP_FILTER NONE)

all (HWTSTAMP_ FILTER ALL)

3. Set switch ip on two board, and ping each other.

S ifconfig switch 192.168.1.2 /* On board A */
$ ifconfig switch 192.168.1.3 /* On board B */
$ ping 192.168.1.3 /* On board A */

4. For 802.1AS testing, use the configuration file gpTP. cfg in linuxptp source. Run the below commands on the two
boards instead.

$ ptp4l -i swp0 -p /dev/ptpl -f gPTP.cfg -2 -m

NOTE
Install ptp4l (linuxptp), if not installed already in ubuntu rootfs. Also, stop and disable ptp4l.service in case of failure;
as used needs to write it as per the requirement. ptp4l v1.8 is used for LSDK verification.

apt update

apt install linuxptp

systemctl stop ptp4l.service
systemctl disable ptp4l.service

H H FH

6.3.3.3 Qbv
The following figure describes the setup for Qbv test on LS1028ARDB.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 90/237

NXP Semiconductors

Time Sensitive Network (TSN)

Stream
SWPOj A
(swp0) PO
SWP1 N
swpl) P1
LS1028ARDB (swpl) e Capture Test Center
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swpd)
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCl BUS

Figure 18. Qbv test

6.3.3.3.1 Tsntool usage

6.3.3.3.1.1 Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > gbvO.txt

#Explaination:

'NUMBER' : t0

'GATE VALUE' : 00000000b
'TIME_LONG' : 20000 ns
./tsntool

tsntool> verbose
tsntool> gbvset --device swpl --entryfile ./gbv0.txt

#Send one broadcast frame to swpO from TestCenter.
ethtool -S swpl
#Should not get any frame from swpl on TestCenter.

echo “t0 11111111b 20000” > gbv0.txt
tsntool> gbvset --device swpl --entryfile ./gbv0.txt

#Send one broadcast frame to swpO on TestCenter.
ethtool -S swpl
#Should get one frame from swpl on TestCenter.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 91/237

NXP Semiconductors

6.3.3.3.1.2 Basetime test

For the basetime test, first get the current second time:

#Get current time:
tsntool> ptptool -g -d /dev/ptpl

Time Sensitive Network (TSN)

#add some seconds, for example user gets 200.666 time clock, then set 260.666 as result

tsntool> gbvset --device swpl --entryfile ./gbv0.txt --basetime 260.666

#Send one broadcast frame to swpO on the Test Center.
#Frame could not pass swpl until time offset.

6.3.3.3.1.3 Qbv performance test

Use the following commands for the QBv performance test:

cat > gbv5.txt << EOF

t0 11111111b 1000000

tl 00000000b 1000000

EOF

gbvset --device swpl --entryfile gbv5.txt
#Send 1G rate stream to swp0 on TestCenter.

#The stream would get about half line rate from swp1.

6.3.3.3.2 Tc-taprio usage
LS1028ardb support the tarprio qdisc to setup Qbv either. Below is an example Setup.

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300um.

tc gdisc replace dev swpl parent root handle 100 taprio num tc 8 map 0 1 2 3 4 5 6 7 \
queues 1Q@0 1Q@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000 flags 0x2

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, we will capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and we couldn't capture the frame from swp1.

4. Disable the Qbv for swp1 port as below

tc gdisc del dev swpl parent root handle 100 taprio

6.3.3.4 Qbu

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

92 /237

NXP Semiconductors

Time Sensitive Network (TSN)

PCP=0 Streamll_
SWPOJ A 1
(swpO0) PO |
SWP1
LS1028ARDB (swpl) P1
swez| PCP=1 Streamz] TeSt Center
(swp2) P2
SWP3
(swp3)Y P3
ENETC TSN-Switch|
\ Preemption
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCI BUS

Figure 19. Qbu test on switch

6.3.3.4.1 Tsntool usage
1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool or ethtool to
set it.

#tsntool command to set preemptable queues:
tsntool> gbuset --device swp3 --preemptable 0x02

2. Send two streams from TestCenter, set packet size to be 1500Byte and bandwidth to be 1G, then check the number of
additional mPackets transmitted by PMAC:

devmem 0x1fc010e48 32 0x3 && devmem 0x1fc010280

3. Qbu combined with Qbv test.

Set queue 0 gate open 20us, queue 1 gate open 20us.

cat > gbv0.txt << EOF

t0 00000001b 200000

tl 00000010b 200000

EOF

gbvset --device swp3 --entryfile gbvO0.txt

Send two streams from TestCenter, packets in queue 1 will be preempted when gate 1 closed

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 93/237

NXP Semiconductors

Time Sensitive Network (TSN)

6.3.3.4.2 Ethtool usage

1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool or ethtool to
set it.

#ethtool command to set preemptable queues:
ethtool --set-frame-preemption swp3 preemptible-queues-mask 0x02 min-frag-size 124

Explanation:

* preemptible-queues-mask: A 8-bit vector which specifies preemptable queues within the 8 priorities (with bit-0 for
priority-0 and bit-7 for priority-7).

* min-frag-size: at least frame bytes have been transmitted in fragment, the minimum non-final fragment size is 64,
128, 192, or 256 octets (include 4 Bytes fragment header).

2. Send two streams from TestCenter, set packet size to be 1500Byte and bandwidth to be 1G, then check the number of
additional mPackets transmitted by PMAC:

devmem 0x1fc010e48 32 0x3 && devmem 0x1£c010280

3. Qbu combined with Qbv test.

Set queue 0 gate open 20us, queue 1 gate open 20us.
tc gdisc replace dev swp3 parent root handle 100 taprio num tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \

sched-entry S 01 200000 \
sched-entry S 02 200000 flags 0x2

Send two streams from TestCenter, packets in queue 1 will be preempted when gate 1 closed

6.3.3.5 Qav

The below figure illustrates the Qav test case setup.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 94 /237

NXP Semiconductors

Time Sensitive Network (TSN)

PCP=1 Streaml
swroj A
(swp0) PO N
swp1] 1PCP=2 Stream2
LS1028ARDB (swpl) P1 '< Test Center
swp2 N
(swp2) P2
SWP3 Capture
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS

Figure 20. Qav test case

6.3.3.5.1 Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 --percentage 40

2. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.

NOTE
Stream rate must lager than bandwidth limited of queue.

3. Capture frames on swp2 on TestCenter.

The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2), (PCP=2),..

6.3.3.5.2 Tc-cbs usage

LS1028a support the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 20Mbit/s for queue 1 and 40Mbit/s
for queue 2.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 95/237

NXP Semiconductors

Time Sensitive Network (TSN)

1. Set the cbs of two traffic classes:

tc gdisc add dev swp2 root handle 1: mgprio num tc 8 map 0 1 2 3 4 56 7 \
queues 1Q@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw O
tc gdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
sendslope -980000 idleslope 20000 offload 1
tc gdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
sendslope -960000 idleslope 40000 offload 1
2. Send one stream with PCP=1 from TestCenter, we can get the stream bandwith is 20Mbps from swp2.

3. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.

4. delete the cbs rules.

tc gdisc del dev swp2 parent 1:2 cbs
tc gdisc del dev swp2 parent 1:3 cbs

6.3.3.6 Qci

The figure below illustrates the Qci test case setup.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 96 /237

NXP Semiconductors

Time Sensitive Network (TSN)

Streaml

(swp0) PO

LS1028ARDB (swpl) P1
(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 21. Qci test case

6.3.3.6.1 Tsntool usage

6.3.3.6.1.1 Stream identification
Use the following commands for stream identification:
1. Set a stream to swp0 on TestCenter.

2. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01, Vlan ID : 1

tsntool> cbstreamidset --device swpl --nullstreamid --index 1 --nulldmac 0x000183fel201 --
nullvid 1 --streamhandle 1

Explanation:

* device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by switch, switch
will not care device port.

* nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 97 /237

NXP Semiconductors

Time Sensitive Network (TSN)

* nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> gcisfiset --device swpO --index 1 --streamhandle 1 --gateid 1 --priority 0 --
flowmeterid 68

Explanation:
* device: can be any one of switch ports.
* index: value is the same as streamhandle of cbstreamidset.
* streamhandle: value is the same as streamhandle of cbstreamidset.
* flowmeterid: PSFP Policer id, ranges from 63 to 383.

3. Send one frame, then check the frames.

ethtool -S swpl
ethtool -S swp2
Only swp1 can get the frame.

4. Use the following command to check and debug the stream identification status.

gcisfiget --device swp0O --index 1

NOTE
The parameter streamhandle is the same as index in stream filter set, we use streamhandle as SFID to
identify the stream, and use index to set stream filter table entry.

6.3.3.6.1.2 Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv 0 --gatelistfile
sgi.txt --basetime 0xO0
Explanation:
« 'device': can be any one of switch ports.
* 'index': gateid
* 'basetime': It is the same as Qbv set.

2. Send one frame on TestCenter.
ethtool -S swpl

Note that the frame could pass, and green_prio_3 has increased.
3. Now run the following commands:
echo "t0 Ob 3 50000 200" > sgi.txtx

tsntool> gcisgiset --device swp0O --enable --index 1 --initgate 1 --initipv 0 --gatelistfile
sgi.txt --basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swpl

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 98 /237

NXP Semiconductors

Time Sensitive Network (TSN)

Note that the frame could not pass.

6.3.3.6.1.3 SFI maxSDU test
Use the following command to run this test:

tsntool> gcisfiset --device swpO --index 1 --gateid 1 --priority 0 --flowmeterid 68 --maxsdu 200
Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swpl
User can observe that the frame could not pass.
6.3.3.6.1.4 FMI test

Use the following set of commands for the FMI test.

1. Run the command:

tsntool> gcifmiset --device swpO --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000

NOTE
» The 'device' in above command can be any one of the switch ports.

* The index of gcifmiset must be the same as flowmeterid of gcisfiset.
2. Now, send one stream (rate = 100M) on TestCenter.
ethtool -S swp0

Note that all frames pass and get all green frames.

3. Now, send one stream (rate = 200M) on TestCenter.
ethtool -S swp0

Observe that all frames pass and get green and yellow frames.

4. Send one stream (rate = 300M) on TestCenter.
ethtool -S swp0

Note that not all frames could pass and get green, yellow, and red frames.

5. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames.

6. Send one yellow stream (rate = 200M) on TestCenter.
ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

7. Test cf mode.

tsntool> gcifmiset --device swpO --index 68 --cir 100000 --cbs 4000 --ebs 4000 --eir 100000 --cf

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 99 /237

NXP Semiconductors

Time Sensitive Network (TSN)
8. Send one yellow stream (rate = 200M) on TestCenter.
ethtool -S swp0

All frames pass and get all yellow frames (use CIR as well as EIR).

9. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0
Note that not all frames could pass and get yellow and red frames.

6.3.3.6.1.5 Port based SFI set

LS1028a switch can works on port based PSFP set, which means when a null identified stream is recieved on ingress port, switch
will using the port default SFI.

Below example test no streamhandle in qcisfiset to set a port default SFI.

1. Using SFID 2 to set as swp0 port default SFI.
tsntool> gcisfiset --device swpO --index 2 --gateid 1 --flowmeterid 68

After the port default SFI set, any stream send from swpO port will do the gate 1 and flowmeter 68 policy.

2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv 0 --gatelistfile sgi.txt

3. Send any stream to swp0.

ethtool -S swpl

Note that the frame could pass, and green_prio_4 has increased.

6.3.3.6.2 Tc-flower usage

The figure below illustrates the tc-flower based Qci test case setup.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 100/237

NXP Semiconductors

Time Sensitive Network (TSN)

Streaml
(swp0) PO
LS1028ARDB (swpl) P1 Test Center
(swp2) P2
(swp3) P3
- m T
TSN-Switch =
ENETC D
(eno3) enetc 3 P5 (swp5) 2
=
(eno2) enetc 2 P4 (swp4) %
o
(enol) enetc 1 e
(eno0) enetc O

PCI BUS

Figure 22. TC-flower based Qci test case

1. Get destination MAC on LS1028ARDB board, then use "dst_mac CA:9C:00:BC:6D:68" as shown in the following commands.

ifconfig enoO0
Link encap:Ethernet HWaddr CA:9C:00:BC:6D:68
inet addr:169.254.88.50 Bcast:169.254.255.255 Mask:255.255.0.0
inet6 addr: fe80::ed36:cd4ce:bb04:863d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2 errors:0 dropped:0 overruns:0 frame:0
TX packets:1529 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:152 (152.0 B) TX bytes:118456 (115.6 KiB)

2. Set Qci on ingress port swp0.
1) Use the following commands to set Qci gate.
tc gdisc add dev swp0O ingress

tc filter add dev swpO protocol 802.1Q parent ffff: flower skip sw dst mac CA:9C:00:BC:6D:68 vlan id
1 action gate index 1 base-time 0 sched-entry CLOSE 6000 -1 -1

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 101 /237

NXP Semiconductors

Time Sensitive Network (TSN)

2). Use the following commands to set Qci flow meter.

tc gdisc add dev swp0O ingress
tc filter add dev swp0O protocol 802.1Q parent ffff: flower skip sw dst mac CA:9C:00:BC:6D:68 vlan id
1 action police index 1 rate 10Mbit burst 10000

3). Use the following commands to set Qci SFI priority.

tc gdisc add dev swpO ingress
tc filter add dev swpO protocol 802.1Q parent ffff: flower skip sw dst mac CA:9C:00:BC:6D:68 vlan id
1 vlan prio 1 action gate index 1 base-time 0 sched-entry CLOSE 6000 -1 -1

4). Use the following commands to set both gate and flow meter.

tc gdisc add dev swp0O ingress
tc filter add dev swp0O protocol 802.1Q parent ffff: flower skip sw dst mac CA:9C:00:BC:6D:68 vlan id
1 action gate index 1 base-time 0 sched-entry OPEN 6000 2 -1 action police index 1 rate 10Mbit burst
10000

3. Send a stream from testcenter, set the stream dest mac as CA:9C:00:BC:6D:68, set vid=1 and vlan_prio=1 in vlan tag.

4. Using "tcpdump -i eno0 -w eno0.pcap" to receive the stream on eno0, check if packets are received.

5. Use the following commands to delete a stream rule.

tc -s filter show dev swpO ingress
tc filter del dev swpO ingress pref 49152

NOTE
« Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.

.

MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.
» Qci gate cycle time is expected to be more than 5 ps.

» Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

6.3.3.7 802.1CB

The following figure describes the test setup for the seamless redundancy test case.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 102 /237

NXP Semiconductors

Time Sensitive Network (TSN)

Board A
LS1028ARDB

ENETC
(eno3) enetc 3

(eno2) enetc 2

(enol) enetc 1
(eno0) enetc 0

MACO

Board B

LS1028ARDB

(swp0) po&r > '(s‘NpD) PO
| ~ H
(swpl)}Pl e tawpl) P1

1
(sprI}PE {gwp2) P2
1)

(swp3) P3 (swp3) P3
TSN-Switch) TSN-Switch
P5 (swpb) P5 (swpb)
P4 (swp4) ANV VYV P4 (swp4)
Send Capture Capturs
PCI BUS Test Center PCI BUS

ENETC
(eno3) enetc 3

(eno2) enetc 2

(enol) enetc 1

(eno0) enetc 0
MACO

Figure 23. Seamless redundancy test

6.3.3.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.

On board A:

ip
ip
ip
ip
ip
ip

link
link
link
link
link
link

add
set
set
set
set
set

bridge vlan
bridge vlan
bridge vlan

On board B

ip link add
ip link set
ip link set
ip link set
ip link set
ip link set
bridge vlan

name switch
switch up
swpO master
swpl up

swp2 master
swp3 master
add dev swpO
add dev swp2
add dev swp3

name switch
switch up

swp0 master
swpl master
swp2 master
swp3 master
add dev swp

type bridge vlan filtering 1
switch && ip link set swpO up

switch && ip link set swp2 up
switch && ip link set swp3 up
vid 1 pvid
vid 1 pvid
vid 1 pvid

type bridge vlan filtering 1

switch && ip link set swpO up
switch && ip link set swpl up
switch && ip link set swp2 up
switch && ip link set swp3 up
0 vid 1 pvid

bridge vlan add dev swpl vid 1 pvid

bridge vlan add dev swp2 vid 1 pvid

bridge vlan add dev swp3 vid 1 pvid

tsntool> cbstreamidset --device swpO --index 1 --nullstreamid --nulldmac Ox7EA88C9B41DD --

2. On board A, run the commands:

nullvid 1 --streamhandle 1

tsntool> cbgen --device swp0O --index 1 --iport mask 0x08 --split mask 0x07 --seq len 16 --

seq num 2048

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

103/237

NXP Semiconductors

Time Sensitive Network (TSN)

In the command above,
* device: can be any one of switch ports.
* index: value is the same as streamhandle of cbstreamidset.
3. Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.
4. Capture frames on swp2 on TestCenter.
We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801, 23450802, 23450803...

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

6.3.3.7.2 Sequence Recover test
Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

tsntool> cbstreamidset --device swp2 --index 1 --nullstreamid --nulldmac Ox7EA88C9B41DD --
nullvid 1 --streamhandle 1
tsntool> cbrec --device swpO --index 1 --seq len 16 --his len 31 --rtag pop en
In the cbrec command mentioned above:
* device: can be any one of switch ports.
e index: value is the same as streamhandle Of cbstreamidset.
2. Send a frame from TestCenter to swp3 of board A, set dest mac to be 7E:A8:8C:9B:41:DD.

3. Capture frames from swp2 of board B on TestCenter, we can get only one frame without sequence tag.

6.3.3.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to different QoS class.
These are explained in the following sections.

6.3.3.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default QoS class is 0.

Set the PCP value on TestCenter.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 104 /237

NXP Semiconductors

Time Sensitive Network (TSN)

General Frame Groups RxPort Preview
Preview:
Ethernetll (BErE [showallFields [] AllowInvalid Packets
Hame Value
Frames
=] Frame
Create new Frame > ;
= EthernetIl

Save Frame as

Template.., - Destination MAC 00:00:01:00:00:01

Manage Frame - Source MAC 00:10:94:00:00:02

Templates... £ Vlans

5 Vlan
Actions = ;
i Type (hex) 100

AddHeader(s).. 8 criority (bits) 000

Link Modifiers/VFDs... CFI (bit) 0

Inszert Modifier... LD (nt) 100

- EtherType (hex) <auto> Internet IP
Others
[+ IPw4 Header

Expand All

Collapse Al
Hex Editor

0000: FB 55 55 55 &
00z20: 00 00 FF FD 3

5555505 0000 01 00
o010: 94 00 00 02 &1 o0 [iE 64 08 00 45 00
9 54 55 0 02 CO 00

]

Ca 0o o

oot ap 10 GuUUUuUUi
api4o000
SEpATAL L AL

d. . E

0K Cancel

Figure 24. Using PCP value of Vlan tag

6.3.3.8.2 Based on DSCP of ToS tag
Use the below steps to identify stream based on DSCP value of ToS tag.

1. Map the DSCP value to a specific QoS class using the command below:
tsntool> dscpset --device swpO --index 1 --cos 1 --dpl O

Explanation:
e index: DSCP value of stream, 0-63.
* cos: QoS class which is mapped to.

* dpl: Drop level which is mapped to.

2. Setthe DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP value on TestCenter

as shown in the following figure.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

105/237

NXP Semiconductors

Time Sensitive Network (TSN)

General Frame Groups

Rx Port Preview

Preview:

Ethernetll [J showallFields [] AllowInvalid Packets
Name Value

Frames

Create new Frame >

Save Frame as

=l Frame

[EthernetIl
- IPv4 Header

Template...
Manage Frame g 05 iffServ tos (0x04)
Templates... - Total length {int) <auto> calculated
. - Time to live (int) 255
Actions
.. Protocol (int) <auto> Experimental
Add HEECIEI'[S)... - Source 192,85.1.2
Link Modifiers/VFDs... .. Destination 192.0.0.1
Insert Modifier.. - Header Options
- Gateway 192.85.1.1
Others
Expand All
Collapse &l
Hex Editor

0000 5555 5% 55 55 55 5505 00 00 O o
0010: 94 0000 02 81 00 20 64 05 00 450014 0000 1 . . .
0020 0000 FF FD 33 90 C0O 55 01 02 CO oa

Navigatestreamblods: 14 of 1

g

00 0o m

Figure 25. Setting DSCP value on TestCenter

Moo uuuluuud

P M

.. d. . EM. .. .
JERe AU AL

QK

Cancel

6.3.3.8.3 Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.

1. Identify a stream.

tsntool> cbstreamidset --device swpl --nullstreamid --nulldmac 0x000183fel201 --nullvid 1 --
streamhandle 1

tsntool> gcisfiset --device swp0O --index 1 --gateid 1 --flowmeterid 68

2. Set to Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv 0 --
gatelistfile sgi.txt

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

106 /237

NXP Semiconductors

Time Sensitive Network (TSN)

6.3.3.9 ACL

The access-control-list is using “tc flower” command to set the filter and actions. Following keys and actions are supported
on LS1028a:

keys:

vlan_id

vlan_prio

dst_mac/src_mac for non IP frames
dst_ip/src_ip

dst_port/src_port

actions:

trap

drop

police

vlan modify

vlan push(Egress)

Using following commands to set, get and delete ACL rules:

tc gdisc add dev swp0O ingress

tc filter add dev swpO parent ffff: protocol [ip/802.1Q] flower skip sw [keys] action [actions]
tc filter list dev swpO parent ffff:

tc filter del dev swpO parent ffff: pref [pref id]

tc gdisc add dev swpl clsact

tc filter add dev swpl egress protocol 802.1Q0 flower skip sw [keys] action vlan push id [value]
priority [value]

tc filter show dev swpl egress

tc filter del dev swpl egress pref [pref id]

There are four ACL use cases for testing:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 107 / 237

NXP Semiconductors

Time Sensitive Network (TSN)

Stream
SWPOj A
(swp0) PO
SWP1 N
swpl) P1
LS1028ARDB (swpl) e Capture Test Center
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swpd)
(enol) enetc 1 X
MACO
(eno0) enetc O
PCl BUS

Figure 26. ACL test

1. Drop all frames from source IP 192.168.2.1.

tc gdisc add dev swpO ingress
tc filter add dev swp(O parent ffff: protocol ip flower skip sw src ip 192.168.2.1 action drop

Set source IP as 192.168.2.1 and send ip package from testcenter, package will be dropped on swp0.

2. Limit bandwidth of HTTP streams to 10Mbps.

tc filter add dev swpO parent ffff: protocol ip flower skip sw ip proto tcp dst port 80 action
police rate 10Mbit burst 10000

Send TCP package and set destination port as 80 on testcenter, set the stream bandwidth to 1Gbps, we can get a 10Mbps
stream rate.

3. Filter frames which have a specific vlan tag(VID=1 and PCP=1), then modify the vlan tag(VID=2, PCP=2) and classified to
Qos traffic class 2.

ip link set switch type bridge vlan filtering 1

tc gdisc add dev swpO ingress

tc filter add dev swpO parent ffff: protocol 802.1Q flower skip sw vlan id 1 vlan prio 1 action
vlan modify id 2 priority 2

bridge vlan add dev swpO vid 2

bridge vlan add dev swpl vid 2

Set vid=1 and pcp=1 in vlan tag, then send ip package from testcenter, we can get a package with vid=2, pcp=2 from swp1
on TestCenter.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 108 /237

NXP Semiconductors

Time Sensitive Network (TSN)

4. Push a specific vlan tag(vid=3, pcp=3) into frames(classified vid=2, pcp=2 in switch) egress from swp1.

tc gdisc add dev swpl clsact

tc filter add dev swpl egress protocol 802.1Q flower skip sw vlan id 2 vlan prio 2 action vlan

push id 3 priority 3

Set vid=1 and pcp=1 in vlan tag, then send ip package from testcenter, the frame will hit rule in usecase 3 and retag the
vlan(vid=2, pcp=2). we can get a frame with vid=3, pcp=3 from swp1 on TestCenter.

5. Push double vlan tag(Q-in-Q) into frames egress to swp1.

ip
ip
ip
ip

link add dev br0 type bridge
link set dev swp0O master br0
link set dev swpl master br0
link set br0O type bridge vlan filtering 1

bridge vlan add dev swpO vid 222

bridge vlan add dev swpl vid 222

tc
tc

gdisc add dev swpl clsact

filter add dev swpl egress protocol 802.1Q flower skip sw \
vlan id 222 vlan prio 2 \

action vlan push id 200 priority 1 protocol 802.1AD \
action vlan push id 300 priority 3

Result: TX(tpid:8100 vid:222 pri:2) -> swp0 -> swp1 -> RX(S-TAG tpid:88A8 vid:200 pri:1, C-TAG tpid:8100 vid:300 pri:3)

6. Pop single or double vian tag(Q-in-Q) from frames ingress from swp0.

ip
ip
ip
tc
tc

link add dev br0 type bridge

link set dev swp0O master br0

link set dev swpl master br0

gdisc add dev swpO ingress

filter add dev swpO ingress \

protocol 802.lad flower \

vlan id 111 vlan prio 1 vlan ethtype 802.1qg \
cvlan id 222 cvlan prio 2 cvlan ethtype ipvé4 \
action vlan pop

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:222 pri:2) -> swp0 -> swp1 -> RX(TAG tpid:8100
vid:222 pri:2)

tc

filter add dev swpO ingress \

protocol 802.lad flower \

vlan id 111 vlan prio 1 vlan ethtype 802.1qg \
cvlan_id 223 cvlan prio 2 cvlan ethtype ipv4 \
action vlan pop \

action vlan pop

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:223 pri:2) -> swp0 -> swp1 -> RX(received packets without
VLAN tag)

6.3.4 Q-in-Q configuration on Felix switch

1. Q-in-Q feature

Q-in-Q feature allow service providers to create a Layer 2 Ethernet connection between two user sites. Providers can
segregate different user's VLAN traffic on a link or bundle different user VLANs. When using Q-in-Q, the user's 802.1Q VLAN
tags(C-TAG:0x8100) are prepended by the service VLAN tag(S-TAG: 0x88A8).

2. Q-in-Q application scenario

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

109 /237

NXP Semiconductors

Time Sensitive Network (TSN)

In the following scenario, switch's port swp0 connects with Customer 1's LAN, swp1 connects with ISP's MAN,
The traffic with VLAN tag is like this:

uplink: Customer LAN(only C-TAG) -> swp0 -> swp1(add S-TAG) -> ISP MAN(S-TAG + C-TAG)
downlink: ISP MAN(S-TAG + C-TAG) -> swp1(pop S-TAG)-> swpO(only C-TAG) -> Customer LAN

MAN
Service-Proffider Domain

SWP1

‘\ MAN Port /

Customer, Network Port
Ports
Customer 1's LAN Customer 2's LAN

3. Q-in-Q configuration example

3.1 Enable swp1 Q-in-Q mode

devlink dev param set pci/0000:00:00.5 name qing_port_bitmap value 2 cmode runtime

Note:
a. 0000:00:00.5 is pcie bus and device number of ocelot switch.

b. value 2 is bitmap for port 1, if port n is linked to ISP MAN, the related bit n should be set to 1.
3.2 Create bridge and add ports

ip link add dev br0 type bridge vlan protocol 802.1lad
ip link set dev swpO master br0

ip link set dev swpl master br0

ip link set dev br0 type bridge vlan filtering 1

3.3 Set swp0 pvid and untagged for egress traffic

bridge vlan del dev swp0O vid 1 pvid
bridge vlan add dev swpO vid 100 pvid untagged
bridge vlan add dev swpl vid 100

3.4 Result
Customer(tpid:8100 vid:111) -> swp0 -> swp1 -> ISP(STAG tpid:88A8 vid:100, CTAG tpid:8100 vid:111)
ISP(tpid:88A8 vid:100 tpid:8100 vid:222) -> swp1 -> swp0 -> Customer(tpid:8100 vid:222)

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 110/237

NXP Semiconductors

Time Sensitive Network (TSN)

6.4 Verifying TSN features on LS1021A-TSN board

On the LS1021A-TSN platform, TSN features are provided by the SJA1105TEL Automotive Ethernet switch. These hardware
features comply to pre-standard (draft) versions of the following IEEE specifications:

» 802.1Qbv - Time Aware Shaping
» 802.1Qci - Per-Stream Filtering and Policing
» 1588v2 - Precision Time Protocol
The following demonstration illustrates the SJA1105 hardware features listed below:
* Ingress rate limiting via the L2 (best-effort) policers
» Time-aware shaping

» 802.1AS gPTP synchronization

6.4.1 Topology
For demonstrating the SJA1105 TSN features, the following topology is required:
* 1 LS1021A-TSN board, acting as a TSN switch

» 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as a sender of latency-
sensitive traffic

» 1 generic host (can be a PC or another board), acting as a sender of high-bandwidth traffic

» 1 generic host (can be a PC or another board) capable of PTP hardware timestamping, acting as receiver for the
latency-sensitive and for the high-bandwidth traffic

The required software packages for the generic hosts are:
» ptp4l, phc2sys and phc_ctl from the linuxptp package: https://github.com/openil/linuxptp
* iperf3
« isochron from the tsn-scripts package: https://github.com/vladimiroltean/tsn-scripts/tree/isochron
The generic hosts are assumed to be connected to the LS1021A-TSN board through an interface called ethO.

This topology is depicted in the following figure.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 1117237

NXP Semiconductors

Time Sensitive Network (TSN)

Generic host 1

LS1021A-TSN|switch board

SJA1105/ eth2 L<1021A
SWITCH ReMi& = “AF M SoC

ARB031

Generic host 3

Generic host 2

Figure 27. Topology of the demo network

6.4.2 SJA1105 Linux support
The SJA1105 switch is supported in the OpenlL Linux kernel using the Distributed Switch Architecture (DSA) framework (an
overview of which can be found at https://netdevconf.info/2.1/papers/distributed-switch-architecture.pdf).
The following kernel configuration options are available for controlling its features:
* CONFIG_NET_DSA_SJA1105: enables base support for probing the SJA1105 ports as 4 standalone net devices capable of
sending and receiving traffic

* CONFIG_NET_DSA_SJA1105_PTP: enables additional support for the PTP Hardware Clock (PHC), visible in /dev/ptp1 on
the LS1021A-TSN board, and for PTP timestamping on the SJA1105 ports

* CONFIG_NET_DSA_SJA1105_TAS: enables additional support for the Time-Aware Scheduler (TAS), which is configured via
the tc-taprio qdisc offload

The documentation for this kernel driver is available at https://www.kernel.org/doc/html/latest/networking/dsa/sja1105.html.
Below is a listing of several driver features.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 1127237

NXP Semiconductors

Time Sensitive Network (TSN)

The LS1021A-TSN device tree (arch/arm/boot/dts/Is1021a-tsn.dts) defines the sja1105 port names as swp2, swp3, swp4 and
swp5. The numbers have a direct correspondence with the chassis labels ETH2, ETH3, ETH4 and ETHS5. The ETH2 chassis label
(represented in Linux by the swp2 net device) should not be confused with the eth2 net device, which represents the LS1021A
host port for this switch (called DSA master).

On the LS1021A-TSN board, network management is done by the systemd-networkd daemon, whose configuration files are
located in /etc/systemd/network/. On this board, the following configuration files for systemd-networkd are present by default:

» brO.netdev: Creates a bridge net device with VLAN filtering disabled, STP disabled and MVRP disabled
» br0.network: Configures the net devices enslaved to br0 to request an IPv4 address via DHCP

» ethO.network, eth1.network, swp.network: Configures all 6 ports of the LS1021A-TSN board to be part of the same br0 bridge
(4 ports are bridged in hardware, 2 ports are bridged in software)

 eth2.network: Configures the DSA master port to come up automatically, and assigns it a dummy link-local IP address. Having
the DSA master interface up is a requirement for using the switch net devices.

Although all ports are configured for L2 forwarding by default (and therefore the only IP address for this board should be assigned
to br0), this can be changed by removing the "Bridge=br0" line from the files in /etc/systemd/network/ and then running "systemctl
restart systemd-networkd".

In standalone mode, each SJA1105 port is able of acquiring an IP address and transferring general purpose packets to/from the
kernel. This is internally supported by the kernel driver by repurposing the VLAN tagging functionality for switch port separation
and identification. Therefore the ability to support general purpose traffic /O only works as long as the user does not request
VLAN tagging, via the bridge vlan_filtering option. When this happens, the switch driver goes to a reduced functionality mode,
where the swpN net devices are no longer capable of sending and receiving general packets to/from the kernel. This is a hardware
limitation which can be somewhat mitigated by enabling the best_effort_vlan_filtering devlink parameter (by following the steps in
the kernel documentation).

Actually there is a second mechanism of frame tagging, which works for STP and PTP traffic and does not rely on VLAN tagging.
Therefore, the STP and PTP protocols remain operational on the sja1105 driver even when the ports are enslaved to a bridge
with vlan_filtering=1.

When VLAN awareness is disabled, the sja1105 ports perform no checks on VLAN port membership or PCP, and performs no
alteration to the VLAN tags. For these operations, the following command is necessary:

ip link set dev br0 type bridge vlan filtering 1
Once VLAN filtering is enabled, the VLAN table of each switch port can be inspected and modified using the "bridge vlan"
commands from the iproute2 package.

The STP state machine can be started on the bridge using the following command:

ip link set dev br0 type bridge stp state 1
ip link set dev br0O down
ip link set dev br0O up
The switch L2 address forwarding database (FDB) can be inspected and modified using the "bridge fdb" set of commands.

Port statistics counters can be inspected using the ethtool -S swpN command.

The sja1105 port MTU can be configured up to a maximum of 2021 using the following command:
ip link set dev swp2 mtu 2000

Port mirroring on a sja1105 port (mirroring of ingress and/or egress packets) can be configured via the following set of commands:
tc gdisc add dev swp2 clsact

tc filter add dev swp2 ingress matchall skip sw \
action mirred egress mirror dev swp3

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 113/237

NXP Semiconductors

Time Sensitive Network (TSN)

tc filter show dev swp2 ingress
tc filter del dev swp2 ingress pref 49152

There are 3 types of policers currently supported by the sja1105 driver:

» Port policers: These affect all traffic that is incoming on a port, except traffic that hits a more specific rule (see below). These
are configured as follows:

tc gdisc add dev swp2 clsact
tc filter add dev swp2 ingress matchall skip sw \
action police rate 10mbit burst 64k

« Traffic class policers: These affect only traffic having a specific VLAN PCP. To limit traffic with VLAN PCP 0 (also includes
untagged traffic) to 100 Mbit/s on port swp2 only:

tc gdisc add dev swp2 clsact
tc filter add dev swp2 ingress protocol 802.1Q flower skip sw \
vlan prio 0 action police rate 100mbit burst 64k

» Broadcast policers: These affect only broadcast traffic (destination MAC ff:ff:ff.ff.ff:ff) received on an ingress port.

tc gdisc add dev swp2 clsact
tc filter add dev swp2 ingress flower skip sw dst mac ff:ff:ff:ff:ff:ff \
action police rate 10mbit burst 64k

In absence of a specific policer allocated to a traffic class or to broadcast traffic, these packets will consume from the bandwidth
budget of the port policer.

It is also possible to combine the bandwidth allocation of a traffic class, or of broadcast traffic on multiple ports, and assign them
to a single policer. This functionality is called "shared filter blocks" and can be configured as follows (the example below limits
broadcast traffic coming from all switch ports to a total of 10 Mbit/s):

tc gdisc add dev swp2 ingress block clsact

clsact

1

tc gdisc add dev swp3 ingress block 1 clsact
tc gdisc add dev swp4 ingress_block 1
1

tc gdisc add dev swp5 ingress block clsact
tc filter add block 1 flower skip sw dst mac ff:ff:ff:ff:ff:ff \
action police rate 10mbit burst 64k

For PTP, the sja1105 driver implements the kernel primitives required for interoperating with the linuxptp and other open source
application stacks. OpenlL on the LS1021A-TSN is configured to start linuxptp by default in 802.1AS bridge mode on ports swp2,
swp3, swp4 and swp5. The following system components are involved:

» ptp4l: Daemon thatimplements the IEEE 1588/802.1AS state machines. Configured via the /etc/linuxptp.cfg file and controled
via the linuxptp.service systemctl service.

» phc2sys: Daemon that synchronizes the system time (CLOCK_REALTIME) to the active PHC (/dev/ptp1) or viceversa,
depending on the board role in the network (PTP master or slave). Configured via the /etc/linuxptp-system-clock.cfg file and
controled via the phc2sys.service systemctl service.

To inspect the PTP synchronization status of the board, the following commands can be used:
systemctl start --now ptp4l
systemctl start --now phc2sys

journalctl -b -u ptp4l -f
journalctl -b -u phc2sys -f

Under steady state, the switch ports are expected to maintain a synchronization offset of +/- 100 ns offset to the PTP master.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 114 /237

NXP Semiconductors

Time Sensitive Network (TSN)

During normal operation, the static configuration of the sja1105 needs to be changed by the driver. In turn, this requires a switch
reset, which temporarily disrupts Ethernet traffic and PTP synchronization. After a switch reset, the PTP synchronization offset
may jump to a higher momentary range of +/- 2 500 000 ns. The list of reset reasons in the sja1105 kernel driver is:

» Enabling or disabling VLAN filtering, via the "ip link" command.

» Enabling or disabling PTP timestamping.

» Configuring the ageing time (which is done automatically by the kernel STP state machine when STP is active).
» Configuring the Time-Aware Scheduler via the tc-taprio command.

» Configuring the L2 policers (for MTU or for policing).

6.4.3 Synchronized 802.1Qbv demo
The objectives of this demonstration are the following:
» Synchronize the SJA1105 PTP clock using IEEE 802.1AS.
* Run the SJA1105 Time-Aware Scheduler (802.1Qbv engine) based on the PTP clock.

» Create a small switched TSN network with a flow requiring deterministic latency. Prove the latency is not affected by
interfering traffic.

In the topology described earlier in this chapter, the boards which need to be synchronized by PTP are hosts 1, 2 and the
LS1021A-TSN board. Host 3 only generates iperf traffic, which is not time-sensitive.

The following commands are required to start PTP synchronization using the 802.1AS profile on host 1 and 2:

ptp4l -i eth0 -f /etc/ptp4l cfg/gPTP.cfg -m
phc2sys -a -rr --transportSpecific 0Oxl --step threshold 0.0002 --first step threshold 0.0002

Different output is expected on the two hosts. One will become PTP grandmaster and show the following logs:

* ptp4l:
Apr 07 17:20:24 OpenIL ptp4l[3267]: [13.067] port 1: link up
Apr 07 17:20:24 OpenIL ptp4l1([3267]: [13.104] port 1: FAULTY to LISTENING on INIT COMPLETE
Apr 07 17:20:27 OpenIL ptp4l([3267]: [16.113] port 1l: LISTENING to MASTER
on ANNOUNCE RECEIPT TIMEOUT EXPIRES
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.113] selected local clock 00049f.fffe.05del06 as
best master
Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.113] port 1: assuming the grand master role
Apr 07 17:20:27 OpenIL ptp4l([3267]: [16.692] port 1l: new foreign master 001f7b.fffe.630248-1
Apr 07 17:20:27 OpenIL ptp4l([3267]: [16.692] selected best master clock 00049f.fffe.05£627

Apr 07 17:20:27 OpenIL ptp4l[3267]: [16.692] port 1: assuming the grand master role

* phc2sys:
Apr 07 17:21:24 OpenIL phc2sys[3268]: [73.382] eno0 sys offset 12 s2 freq +2009
delay 1560
Apr 07 17:21:25 OpenlIL phc2sys[3268]: [74.382] eno0 sys offset 2 s2 freq +2003
delay 1560
Apr 07 17:21:26 OpenIL phc2sys[3268]: [75.382] eno0 sys offset -18 s2 freq +1983
delay 1600
Apr 07 17:21:27 OpenIL phc2sys[3268]: [76.383] eno0 sys offset 27 s2 freqg +2023
delay 1600
Apr 07 17:21:28 OpenlIL phc2sys[3268]: [77.383] eno0 sys offset 7 s2 freq +2011
delay 1600
Apr 07 17:21:29 OpenlIL phc2sys[3268]: [78.383] eno0 sys offset -18 s2 freq +1988

delay 1560

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 115/237

NXP Semiconductors

Time Sensitive Network (TSN)

Apr 07 17:21:30 OpenIL phc2sys[3268]: [79.383] enol0 sys offset -8 s2 freqg +1993
delay 1560

While the other board will become a PTP slave, as seen by the following logs:

* ptp4l:
Apr 07 17:23:14 OpenIL ptp4l[3778]: [68484.668] rms 17 max 36 freq +1613 +/- 15 delay 737
+/-
0
Apr 07 17:23:15 OpenIL ptp4l[3778]: [68485.668] rms 8 max 15 freq +1622 +/- 11 delay 737
+/-
0
Apr 07 17:23:16 OpenIL ptp4l[3778]: [68486.669] rms 14 max 28 freq +1643 +/- 13 delay 737
+/-
0
Apr 07 17:23:17 OpenIL ptp4l[3778]: [68487.670] rms 11 max 17 freq +1650 +/- 10 delay 738
+/-
0
Apr 07 17:23:18 OpenIL ptp4l[3778]: [68488.671] rms 11 max 20 freq +1633 +/- 15 delay 738
+/-
0
Apr 07 17:23:19 OpenIL ptp4l[3778]: [68489.672] rms 8 max 16 freq +1640 +/- 11 delay 737
+/-
0
Apr 07 17:23:20 OpenIL ptp4l[3778]: [68490.673] rms 16 max 32 freq +1640 +/- 23 delay 737
+/-
0
Apr 07 17:23:21 OpenIL ptp4l[3778]: [68491.674] rms 12 max 21 freq +1622 +/- 13 delay 737
+/-
0
Apr 07 17:23:22 OpenlIL ptp4l[3778]: [68492.675] rms 13 max 19 freq +1648 +/- 13 delay 738
+/- 0
Apr 07 17:23:23 OpenlIL ptp4l[3778]: [68493.676] rms 18 max 34 freq +1668 +/- 15 delay 737
+/- 0

* phc2sys:
Apr 07 17:23:38 OpenIL phc2sys[3774]: [68508.790] CLOCK REALTIME phc offset 10 s2 freq
-342 delay 1600
Apr 07 17:23:39 OpenIL phc2sys[3774]: [68509.791] CLOCK REALTIME phc offset 2 s2 freq
-347 delay 1560
Apr 07 17:23:40 OpenIL phc2sys[3774]: [68510.791] CLOCK REALTIME phc offset 9 s2 freq
-339 delay 1600
Apr 07 17:23:41 OpenIL phc2sys[3774]: [68511.791] CLOCK REALTIME phc offset -22 s2 freq
-368 delay 1560
Apr 07 17:23:42 OpenlIL phc2sys[3774]: [68512.791] CLOCK REALTIME phc offset -19 s2 freq
-371 delay 1560
Apr 07 17:23:43 OpenIL phc2sys[3774]: [68513.791] CLOCK REALTIME phc offset -13 s2 freq
-371 delay 1560
Apr 07 17:23:44 OpenIL phc2sys[3774]: [68514.791] CLOCK REALTIME phc offset 48 s2 freqg
-314 delay 1560
Apr 07 17:23:45 OpenlIL phc2sys[3774]: [68515.792] CLOCK REALTIME phc offset 22 s2 freq
-325 delay 1560
Apr 07 17:23:46 OpenlIL phc2sys[3774]: [68516.792] CLOCK REALTIME phc offset 17 s2 freq
-324 delay 1560
Apr 07 17:23:47 OpenIL phc2sys[3774]: [68517.792] CLOCK REALTIME phc offset -29 s2 freq

-365 delay 1560

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 116 /237

NXP Semiconductors

Time Sensitive Network (TSN)

The role of the LS1021A-TSN board is to relay the PTP time from the 802.1AS grandmaster to the slave. It acts as a slave on the
port connected to the GM and as a master on the port connected to the other host.

[root@OpenIL ~] # journalctl -b -u ptp4l -f

-- Logs begin at Tue 2020-04-07 14:02:11 UTC. --

Apr 07 17:24:34 OpenIL ptp4l1[291]: [86640.528] rms 10 max 23 freq -19731 +/- 11 delay 737
#= 0

Apr 07 17:24:35 OpenIL ptp4l[291]: [86641.528] rms 9 max 15 freq -19740 +/- 13 delay 736
+/- 0

Apr 07 17:24:36 OpenIL ptp4l[291]: [86642.529] rms 12 max 19 freq -19757 +/- 10 delay 737
+/- 0

Apr 07 17:24:37 OpenIL ptp4l1[291]: [86643.530] rms 9 max 14 freq -19747 +/- 13 delay 737
#= 0

Apr 07 17:24:38 OpenIL ptp4l[291]: [86644.530] rms 13 max 22 freq -19733 +/- 15 delay 736
+/- 0

Apr 07 17:24:39 OpenIL ptp4l[291]: [86645.531] rms 7 max 14 freq -19735 +/- 9 delay 737
+/- 0

Apr 07 17:24:40 OpenIL ptp4l1[291]: [86646.532] rms 7 max 13 freq -19735 +/- 9 delay 737
#= 0

Apr 07 17:24:41 OpenIL ptp4l[291]: [86647.532] rms 11 max 19 freq -19750 +/- 12 delay 737
+/- 0

Apr 07 17:24:42 OpenIL ptp4l[291]: [86648.533] rms 6 max 14 freq -19745 +/- 8 delay 737
+/- 0

Apr 07 17:24:43 OpenIL ptp4l1[291]: [86649.534] rms 9 max 15 freq -19750 +/- 12 delay 736
+/- 0

The above information can be interpreted as follows (only the last line is interpreted here):

» Because the default (implicit) summary_interval in /etc/linuxptp.cfg is O (print stats once per second) and the logSyncinterval
required by 802.1AS is -3 (the sync messages are sent at an interval of 1/8 seconds - 125 ms), this means that synchronization
stats cannot be printed in full (for each packet) and are printed in an abbreviated form (there is no "offset" in the logs).

» The offset to the master has a root mean square value of 9 ms, with a maximum of 15 ns in the past 1 second.

» The frequency correction required to synchronize to the GM was on average -19750 parts per billion (ppb). If the frequency
adjustment exceeds a certail sanity threshold (depending on kernel driver), ptp4l may print "clockcheck" warnings and stop
synchronization. This can be sometimes remedied manually by running the following command to reset the PTP clock
frequency adjustment to zero:

phc_ctl /dev/ptp0 freg 0

» The measured path delay (MAC to MAC propagation delay for ~70 bytes frames at 1Gbps) between its device and its link
partner is exactly 736 ns.

The clock distribution tree in this network is as follows: the system clock of the PTP GM (e.g. Host 1) disciplines its PTP hardware
clock (/dev/ptp0), using phc2sys. Over Ethernet, the PTP GM disciplines the SJA1105 PHC, which disciplines the PTP slave (e.g.
Host 2). On the slave host, the phc2sys process runs in the reverse direction, disciplining the system clock (CLOCK_REALTIME)
to the PTP hardware clock (/dev/ptp0).

A note on using the LS1021A-TSN board as a gPTP GM for this scenario (in place of Host 1). On this board there is no
battery-backed RTC, so there is no persistent source of time onboard. One has to rely on the NTP service (ntpd.service) to provide
time, otherwise a time in 1970 will be relayed into the PTP network.

A note on using phc2sys on the slave host. Since phc2sys attempts to discipline CLOCK_REALTIME, one must manually ensure
that other daemons in the system do not attempt to do the same thing, such as ntpd. Otherwise there will be access conflicts
between phc2sys and the other daemon, and phc2sys will keep printing clockcheck warning messages.

Install the following schedule into the sja1105 port egressing towards Host 2:
tc gdisc add dev swp2 parent root taprio \

num_tc 8 \

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 1171237

NXP Semiconductors

Time Sensitive Network (TSN)

map 0 1 2 345 6 7\

queues 1Q@Q0 1@1 1@2 1@3 1@4 1@5 1l@6 1@7 \
base-time 0 \

sched-entry S 80 50000 \

sched-entry S 40 50000 \

sched-entry S 3f 300000 \

flags 2

The base-time of 0 indicates the phase offset of the network schedule. This time corresponds to Jan 1st 1970, but it is automatically
advanced into an equivalent time into the immediate PTP future (it is advanced by an integer number of cycle-time nanoseconds).

The cycle-time in this example is not provided explicitly, but it is calculated as the sum of the durations of all gate events: 400
microseconds (us).

The schedule at the egress of swp2 is divided as follows:

» 50 us for PTP traffic (S 80). The traffic class assignment of 7 for link-local management traffic (STP, PTP, etc) is fixed to 7 at
driver level and is not user configurable at this time.

» 50 us for traffic class 6 (S 40). The latency-sensitive traffic generator will be injecting into this window.
» 300 us for all other traffic classes 0-5 (S 3f).
Enabling QoS classification on the sja1105 switch based on VLAN PCP is done by running:

ip link set dev br0 type bridge vlan filtering 1

First the receiver for latency-sensitive traffic needs to be started on Host 2. This process waits for connections from the sender
and then transmits its statistics to it.

ip addr add 192.168.1.2/24 dev eth0
isochron rcv --interface ethO --quiet

The sender is started on Host 1 as follows:

ip addr add 192.168.1.1/24 dev eth0

isochron send --interface eth0 --dmac 00:04:9f:05:de:06 —--priority 6 --vid 0 \
--base-time 0 --cycle-time 400000 --shift-time 50000 --advance-time 90000 \
--num-frames 10000 --frame-size 64 --client 192.168.1.2 --quiet

The log should look as follows:

Base time 0.000040000 is in the past, winding it into the future

Now: 1586282691.751150218
Base time: 1586282691.751160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 4329 max 4444 mean 4387.987 stddev 24.508
HW TX deadline delta: min -65238 max -18938 mean -59707.395 stddev 1371.995
SW TX deadline delta: min -33528 max 25058 mean -28221.001 stddev 1844.235
HW RX deadline delta: min -60874 max -14529 mean -55319.408 stddev 1372.222
SW RX deadline delta: min -43398 max 130659 mean -38212.966 stddev 2514.592
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 1 (0.010%)

The following clarifications are necessary:
* The destination MAC is that of Host 2's interface ethO

» The sent packets have a VLAN tag with VID 0 and PCP 6. Because they are priority-tagged (802.1p) the sja1105 switch ports
will accept these packets without any "bridge vlan add vid 0 dev swp3" command.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 118 /237

NXP Semiconductors

Time Sensitive Network (TSN)

» The isochron program sends a number of 10000 frames, at an interval of 400 us. The base-time is the same as on the

sja1105 egress port swp2, but it is shifted with 50 us to the right, in order to align with the beginning of traffic class 6's window
(which is the second timeslot in the schedule). The packet transmission deadlines are therefore at (base-time + shift-time +
N * cycle-time).

» Packets must in fact be transmitted earlier than the TX deadline, in order to compensate for scheduling latencies in the

Linux kernel and the actual propagation delay of the packet. So the isochron program sleeps until 90 us in advance of the
next deadline.

» By "winding the base time into the future", one understands the process by which the original base time (0) is incremented by

the smallest number N of cycles such that it becomes greated than the current PTP time (1586282691.751150218). In this
case, the new base-time is 1586282691.751160000.

» For each packet, the sender collects 2 TX timestamps: one hardware and one software. The receiver also collects two

timestamps. These timestamps are not printed to the console because the --quiet option was specified.

» Correlation between timestamps at the sender and at the receiver is done through a secondary socket. The receiver waits for

connections on TCP port 5000, and transmits its log to the sender, which correlates with its own log by using a key formed out
of {sequence number, scheduled TX time (deadline)}. Both these values are embedded into the packet payload. If the --client
option is omitted, the statistics correlation is not performed. This TCP socket is the only reason for which IP communication
is necessary in this network.

» The path delay is calculated as the delta between the RX hardware timestamp at the receiver and the TX hardware timestamp

at the sender.

» Each "deadline delta" is calculated as the difference between the timestamp and the scheduled TX time of this packet. The

HW TX deadline delta should always be negative, as that indicates the packets were sent before the scheduled TX time has
expired. The SW TX timestamps are taken after the HW TX timestamps in this case, so their meaning is less relevant for this
driver. The RX deadline deltas will become relevant once the 802.1Qbv schedule is installed on the sja1105 switch port.

The above log was taken with no 802.1Qbv schedule active on the sja1105 port and no background traffic. After starting
background traffic:

Host 2
iperf3 -s > /dev/null &
sysctl -w kernel.sched rt runtime us=-1

chrt --fifo 90 isochron rcv -i eth0 --quiet
Host 3

ip addr add 192.168.1.3/24 dev eth0

iperf3 -c 192.168.1.2 -t 48600

Connecting to host 10.0.0.112, port 5201

[
[
[
[
[
[
[

5] local 10.0.0.113 port 60360 connected to 10.0.0.112 port 5201

ID] Interval Transfer Bitrate Retr Cwnd

5] 0.00-1.00 sec 105 MBytes 878 Mbits/sec 0 489 KBytes
5] 1.00-2.00 sec 102 MBytes 859 Mbits/sec 0 513 KBytes
5] 2.00-3.00 sec 102 MBytes 858 Mbits/sec 0 513 KBytes
5] 3.00-4.00 sec 101 MBytes 851 Mbits/sec 0 513 KBytes
5] 4.00-5.00 sec 102 MBytes 860 Mbits/sec 0 539 KBytes

a re-run of the isochron traffic generated by Host 1 looks as follows:

chrt --fifo 90 isochron send -i enoO -d 00:04:9f£:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000
-n 10000 -s 64 -C 10.0.0.112 -g
Base time 0.000040000 is in the past, winding it into the future

Now: 1586286409.635121693
Base time: 1586286409.635160000

Cycle time: 0.000400000
Collecting receiver stats

Summary:
Path delay: min 4314 max 16774 mean 9725.688 stddev 3919.150
HW TX deadline delta: min -64273 max -8538 mean -59894.931 stddev 1467.284

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 119/237

NXP Semiconductors

Time Sensitive Network (TSN)

SW TX deadline delta: min -33286 max 37575 mean -28498.114 stddev 2006.546

HW RX deadline delta: min -58924 max -904 mean -50169.243 stddev 4183.042

SW RX deadline delta: min -52757 max 1109472 mean -29436.032 stddev 23537.847
HW TX deadline misses: 0 (0.000%)

SW TX deadline misses: 4 (0.040%)

It can be seen that the path delay variance has increased due to the prolonged wait of packets until MTU-sized packets generated
by iperf3 have finished transmission.

Finally, installing the 802.1Qbv schedule on the switch has effects upon all statistics calculated by isochron:

chrt --fifo 90 isochron send -i eno0 -d 00:04:9f:05:de:06 -p 6 -v 0 -b 0 -S 50000 -c 400000 -a 90000
-n 10000 -s 64 -C 10.0.0.112 -qg
Base time 0.000040000 is in the past, winding it into the future
Now: 1586286689.223100936
Base time: 1586286689.223160000
Cycle time: 0.000400000
Collecting receiver stats
Summary:
Path delay: min 14199 max 65684 mean 61357.368 stddev 1494.831
HW TX deadline delta: min -64128 max -12643 mean -59822.445 stddev 1494.557
SW TX deadline delta: min -33616 max 25621 mean -28448.709 stddev 1974.185
HW RX deadline delta: min 1476 max 2041 mean 1534.924 stddev 24.822
SW RX deadline delta: min 5243 max 1122800 mean 21040.814 stddev 16752.155
HW TX deadline misses: 0 (0.000%)
SW TX deadline misses: 5 (0.050%)

The path delay has increased, but that is because now it contains the time spent by the packets blocked on the switch waiting for
gate 6 to open.

The HW RX deadline delta now has a new meaning, since in the last example (with 802.1Qbv enabled on the switch), the gate
acts as a barrier and eliminates the jitter in HW TX timestamps, which is induced by scheduling latencies in the sender's operating
system. Generally speaking, the jitter of the sender is eliminated by the first switch upon packet admission into the TSN network.
The effect is that the receiver sees a packet stream with low jitter.

The path delay can be reduced by decreasing the advance time. It is configured in such a way that the packets arrive on the
switch prior to the gate opening, which depends on the jitter of the sender. Minimizing the TX jitter is outside the scope of
this demonstration.

6.5 Verifying TSN features on i.MX8MP board

On i.MX8MP platform, TSN features are provided by dwmac510 ethernet endpoint. The following are hardware
features supported:

» |[EEE 802.1Qbv - Time Aware Shaper

» |IEEE 802.1Qav - Credit-based Shaper

» |EEE802.1Qbu/802.3br, Frame preemption and Interspersing Express Traffic
» IEEE 1588v2 - Precision Time Protocol

» Multiple queues (up to 5) on the Transmit path with a common memory for all Tx queues

6.5.1 Test environment

On i.mx8mp platform, there is only eth1 has TSN features, connect eth1 to Test center to test TSN features.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 120/237

NXP Semiconductors

Time Sensitive Network (TSN)

ETHO TFTP network

.MX8MP

ETH1 Test Center

Figure 28. TSN test environment setup

6.5.2 Clock synchronization
To test 1588 synchronization on dwcmac interfaces, use the following procedure:
1. Connect eth1 interfaces on two boards in a back-to-back manner.

The linux booting log is as follows:

pps ppsO: new PPS source ptp0

2. Configure the IP address
ifconfig ethl 192.168.3.1
3. Check PTP clock and timestamping capability:

ethtool -T ethl
Time stamping parameters for ethl:

Capabilities:
hardware-transmit (SOF_TIMESTAMPING TX HARDWARE)
software-transmit (SOF_TIMESTAMPING TX_ SOFTWARE)
hardware-receive (SOF _TIMESTAMPING RX HARDWARE)
software-receive (SOF _TIMESTAMPING RX SOFTWARE)
software-system-clock (SOF TIMESTAMPING SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING RAW HARDWARE)

PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
off (HWTSTAMP TX OFF)
on (HWTSTAMP TX_ ON)
Hardware Receive Filter Modes:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 121 /237

NXP Semiconductors

none

all

ptpvl-l4-event
ptpvl-1l4-sync
ptpvl-l4-delay-req
ptpv2-l4-event
ptpv2-1l4-sync
ptpv2-l4-delay-req
ptpv2-event
ptpv2-sync

Time Sensitive Network (TSN)

HWTSTAMP FILTER NONE)

HWTSTAMP FILTER ALL)
HWTSTAMP FILTER PTP V1 L4 EVENT)
HWTSTAMP FILTER PTP V1 L4 SYNC)
HWTSTAMP FILTER PTP V1 L4 DELAY REQ)

HWTSTAMP FILTER PTP V2 L4 SYNC)
HWTSTAMP FILTER PTP V2 L4 DELAY REQ)
HWTSTAMP FILTER PTP V2 EVENT)
HWTSTAMP FILTER PTP V2 SYNC)

(
(
(
(
(
(HWTSTAMP FILTER PTP V2 L4 EVENT)
(
(
(
(
(

ptpv2-delay-req HWTSTAMP FILTER PTP V2 DELAY REQ)
4. Run ptp4l on two boards:

ptp4l -i ethl -p /dev/ptpl -m -2

5. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

6. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command on the boards, instead:
ptp4l -i ethl -p /dev/ptpl -f gPTP.cfg -m

Note:

i.MX8MP current dwmac driver (eth1) initializes some hardware functions during opening net device, including PTP initialization.
Before that, the operations on it may not work, like ethtool queries, and PTP operations. So, the workaround is, do operations on
the eth1 and PTP of dwmac only after "ifconfig eth1 up".

6.5.3 Qbv
1. Enable ptp device, and get current ptp time.

ptp4l -i ethl -p /dev/ptpl -m

#Get current time (seconds)

devmem 0x30bf0b08

0x5E01F9B2
2. Get the basetime to be 2 minute later

#Basetime = (currentime + 120) * 1000000000 = 1577187882000000000
3. Set time schedule, open queue 1 in 100um and open queue 2 in 100um

tc gdisc replace dev ethl parent root handle 100 taprio \

num tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time 1577187882000000000 \

2 100000 \
4 100000 flags 2

sched-entry S
sched-entry S

5. Send two streams into queue 1 and queue 2.
./pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 1000 -n 0 -m 90:e2:ba:ff:ff:ff

6. Capture the streams on TestCenter, 100um queue 1 frames(length=1004) and 100um queue 2 frames(length=1504) will be got.
Note:

» Qbv basetime only can set a time after current time.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 122 /237

NXP Semiconductors

Time Sensitive Network (TSN)

» More than one entry need to be set on each tc taprio command.

+ Using “devmem 0x30bf0c58” to get Qbv status to see if gbv status is active. Please refer to "MTL_EST_Status" register.

6.5.4 Qbu

1. Using ethtool to enable Qbu on eth1, set queue 1 to be preemptable.
ethtool --set-frame-preemption ethl preemptible-queues-mask 0x02 min-frag-size 60

Note: Once Qbu enabled, queue 0 is always preemptable queue.

2. Send two streams into queue 1 and queue 2
./pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 1000 -n 0 -m 90:e2:ba:ff:ff:ff

3. Capture the streams on TestCenter, We can see that Q1 frames were preempted into fragments.

4. Qbu combined with Qbv test

Once a queue is set to preemptable queue, gate open/close is invalid in Qbv gate control list, the queue is considered as always
"Open". Using Hold/Release to control all preemptable queues. When the GCL entry set from Hold to Release, preemptable
queues will be transmitting, when GCL entry set from Release to Hold, preemptable queues will be holding.

tc gdisc replace dev ethl parent root handle 100 taprio \
num _tc 5 map 0 1 2 3 4 queues 1Q@0 1@1 1@2 1@3 1@4 base-time 1577187882000000000 \
sched-entry H 2 100000 \
sched-entry R 4 100000 flags 2

6.5.5 Qav

1. Set a queue map handle.
tc gdisc add dev ethl root handle 1: mgprio num tc 5 map 0 1 2 3 4
2. Set bandwidth of queue 3 to be 20Mbps

tc gdisc replace dev ethl parent 1:4 cbs locredit -1470 hicredit 30 sendslope -980000 idleslope 20000
offload 1

3. Send a stream into queue 3
./pktgen/pktgen sample0l simple.sh -i ethl -q 3 -s 500 -n 3000
4. Get the result, bandwidth is 19Mbps.

WARN : Missing destination MAC address

WARN : Missing destination IP address

Running... ctrl”C to stop

Done

Result device: ethl

Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map min: 3 queue map max: 3
dst min: 198.18.0.42 dst max:
src_min: src_max:
src_mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 123 /237

NXP Semiconductors

udp_src min: 9 wudp src max: 109 wudp dst min: 9 udp dst max:

src_mac_count: 0 dst mac count: 0
Flags: UDPSRC RND NO TIMESTAMP QUEUE MAP RND
Current:
pkts-sofar: 3000 errors: O
started: 5631940023us stopped: 5632560030us idle: 79984us
seq num: 3001 cur dst mac offset: 0 cur src mac offset: 0
cur_saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 41
cur queue map: 3
flows: 0
Result: OK: 620007 (c540023+d79984) usec, 3000 (500byte,O0frags)
4838pps 19Mb/sec (19352000bps) errors: 0

5. Set bandwidth of queue 4 to be 40Mbps

9

Time Sensitive Network (TSN)

tc gdisc replace dev ethl parent 1:5 cbs locredit -1440 hicredit 60 sendslope -960000 idleslope 40000

offload 1
6. Send a stream into queue 4 and get the result.

./pktgen/pktgen sample0l simple.sh -i ethl -g 3 -s 500 -n 3000
WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl”C to stop
Done
Result device: ethl
Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map _min: 4 queue map max: 4
dst min: 198.18.0.42 dst max:
src_min: Src_max:
src_ mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00

udp_src_min: 9 udp_src max: 109 udp dst min: 9 wudp_dst max:

src_mac_count: 0 dst mac_count: 0
Flags: UDPSRC_RND NO TIMESTAMP QUEUE_MAP RND
Current:
pkts-sofar: 3000 errors: O
started: 6113136017us stopped: 6113443758us idle: 38457us
seq_num: 3001 cur_dst mac_offset: 0 cur_src_mac_offset: 0
cur_saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 17
cur_gqueue map: 4
flows: 0
Result: OK: 307741 (c269283+d38457) usec, 3000 (500byte,O0frags)
9748pps 38Mb/sec (38992000bps) errors: 0

7. Send two streams into queue 3 and queue 4

./pktgen/pktgen_ twoqueue.sh -i ethl -g 3 -s 1500 -n 0

8. Capture the streams on test center, the frames sort by one Q3 frame and two Q4 frames

9

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

124 /237

NXP Semiconductors

Chapter 7
Preempt-RT

7.1 System RT Latency Tests

The basic measurement tool for RT Linux is cyclictest.

7.1.1 Running Cyclictest

Cyclictest accurately and repeatedly measures the difference between a thread's intended wake-up time and the time at which it
actually wakes up in order to provide statistics about the system's latencies. It can measure latencies in real-time systems caused

by the hardware, the firmware, and the operating system.

The original test was written by Thomas Gleixner (tglx), but several people have subsequently contributed modifications.

Cyclictest is currently maintained by Clark Williams and John Kacur and is part of the test suite rt-tests.
cyclictest :

* Use the below command to Latency Test:

$ cyclictest -p90 -h50 -D30m

NOTE
For detailed parameters of Cyclictest, please refer to https://wiki.linuxfoundation.org/realtime/documentation/
howto/tools/cyclictest/start?s%5b%5d=cyclictest.

7.2 RT Application Development
This section describes how to Development application.
RT Application: API, Basic Structure, Background :
» Basic Linux application rules are the same; Use the POSIX API.
» There is still a division of Kernel Space and User Space.
* Linux applications run in User Space
» For details, please refer to: http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
RT Application: How does user build it :

» Using the cross compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt -Wall

» Using the native compiler on a target example:

$ gcc <filename>.c -o <filename>.out -lrt -Wall

Scheduling policies have two classes:
Completely Fair Scheduling (CFS)

+ SCHED_NORMAL

+ SCHED_BATCH

+ SCHED_IDLE
RT policies:

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

125/237

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

NXP Semiconductors

Preempt-RT

+ SCHED_FIFO
+ SCHED_RR
+ SCHED_DEADLINE

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 126 /237

NXP Semiconductors

Chapter 8
Xenomai

8.1 Xenomai running mode

The dual kernel core is codenamed Cobalt, whereas the native Linux implementation is called Mercury. Both Mercury and Cobalt
are supported.

8.1.1 Running Xenomai Mercury
Xenomai Mercury provides the following API references:
1. Test programs:

* latency: The user manual for Xenomai timer latency benchmark can be found at:
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html.
« cyclictest: The user manual for Xenomai high resolution timer test can be found at:

http://www.xenomai.org/documentation/xenomai-2.6/html/cyclictest/index.html.
2. Utilities:

» xeno: The user manual for Wrapper for Xenomai executables can be found at:
http://www.xenomai.org/documentation/xenomai-2.6/html/xeno/index.html.
» xeno-config: The user manual for displaying Xenomai libraries configuration can be found at:
http://www.xenomai.org/documentation/xenomai-2.6/html/xeno-config/index.html.
8.1.2 Running Cobalt mode

Xenomai Cobalt provides many APIs to perform testing.

1. Clocktest: The test program clocktest provided by Xenomai can be used to test timer APIs. There are three kinds of timer
sources: CLOCK_REALTIME, CLOCK_MONOTONIC, and CLOCK_HOST_REALTIME.

+ Use the below command to check a timer with clock name CLOCK_REALTIME:
$ clocktest —C 0

+ Use the below command to check a timer with clock name CLOCK_MONOTONIC:
$ clocktest —C 1

» Use the below command to check a timer with clock name CLOCK_HOST_REALTIME (Just for Arm V7 SoC):
$ clocktest —-C 32

2. The interrupts handled by Cobalt : IFC and €1000e interrupts are handled by the Cobalt kernel.

$ cat /proc/xenomai/irqg

NOTE
For e1000e test case, the Linux kernel standard network stack is used instead of rtnet stack.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 127 1237

http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-3/html/man1/latency/index.html
http://www.xenomai.org/documentation/xenomai-2.6/html/xeno-config/index.html

NXP Semiconductors

Xenomai

3. Cobalt IPIPE tracer: The following options are available while configuring the kernel settings:

a.

CONFIG_IPIPE_TRACE_ENABLE (Enable tracing on boot): Defines if the tracer is active by default when booting
the system or shall be later enabled via /proc/ipipe/trace/enable. Specifically if function tracing is enabled,
deferring to switch on the tracer reduces the boot time on low-end systems.

CONFIG_IPIPE_TRACE_MCOUNT (Instrument function entries): Traces each entry of a kernel function. Note that
this instrumentation, though it is the most valuable one, has a significant performance impact on low-end systems
(~50% larger worst-case latencies on a Pentium-1 133 MHz).

CONFIG_IPIPE_TRACE_IRQSOFF (Trace IRQs-off times): Instruments each disable and re-enable of hardware
IRQs. This allows to identify the longest path in a system with IRQs disabled.

CONFIG_IPIPE_TRACE_SHIFT (Depth of trace log): Controls the number of trace points. The I-pipe tracer
maintains four ring buffers per CPU of the given capacity in order to switch traces in a lock-less fashion with respect
to potentially pending output requests on those buffers. If user run short on memory, try reducing the trace log depth
which is set to 16000 trace points by default.

CONFIG_IPIPE_TRACE_VMALLOC (Use vmalloc’ed trace buffer): Instead of reserving static kernel data, the
required buffer is allocated via vmal1oc during boot-up when this option is enabled. This can help to start systems
that are low on memory, but it slightly degrades overall performance. Try this option when a traced kernel hangs
unexpectedly at boot time.

4. Latency of timer IRQ

S latency -t 2 -T 60

NOTE
The location of 'latency' might differ from version to version. Currently it is located in /usr/bin.

5. Latency of task in Linux kernel

S latency -t 1 -T 60

6. Latency of task in user space

$ latency -t 0 -T 60

7. Smokey to check feature enabled

$ smokey --run

8. Thread context switch

$ switchtest -T 30

9. xeno-test: By default, the load command is dohell 900, which generates load during 15 minutes.

Step #1: Prepare one storage disk and ethernet port connected server, for example:
$ fdisk /dev/sda

S mkfs.ext2 /dev/sdal

$ mount /dev/sdal /mnt

$ ifconfig <nw port> <ip addr>

Step #2:
$ cd /usr/xenomai/bin

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

128 /237

NXP Semiconductors

Xenomai

Step #3:
$ sudo ./xeno-test -1 "dohell -s <server ip> -m /mnt"

8.2 RTnet

RTnet is a protocol stack that runs between the Ethernet layer and the application layer (or IP layer). It aims to provide deterministic
communication, by disabling the collision detection CSMA/CD, and preventing buffering packets in the network, through the use
of time intervals (time-slots).

RTnet is a software developed to run on Linux kernel with RTAI or Xenomai real-time extension. It exploits the real time kernel
extension to ensure the determinism on the communication stack. To accomplish this goal, all the instructions related to this
protocol make use of real time kernel functions rather than those of Linux. This binds the latencies to the execution times and
latencies of interruptions, which provides deterministic communication.

The following sections describe how to enable the RTnet feature in Xenomai and enable data path acceleration architecture
(DPAA) for Xenomai RTnet.
8.2.1 Hardware requirements
Following are the hardware requirements for implementing the RTnet protocol in user's design:
» For LS1043A, two LS1043ARDB boards (one used as a master and one as a slave board).
» For LS1046A, two LS1046ARDB boards (one used as a master and one as a slave board).
» For LS1028A, two LS1028ARDB boards (one used as a master and one as a slave board).
* In case three or more boards are used, a switch is required for connecting all boards into a subnet.

« If user use an e1000e NIC, insert the e1000e NIC into the P4 slot of the LS1043ARDB or LS1046ARDB board.

QSGMIIPO QSGMIP1

QSGMIP1 QSGMIIPO

Figure 29. Hardware setup for RTnet (LS1043A as an example)

8.2.2 Software requirements
Use the following steps for enabling the RTnet functionality on a Xenomai supported network.

1. Run the command below to configure LS1043ARDB in the openil directory:
make nxp 1s1043ardb-64b_defconfig
2. Alternatively, for configuring LS1046ARDB in the openil directory, use the command below:

make nxp 1sl046ardb-64b defconfig

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 129 /237

NXP Semiconductors

Xenomai
3. Or, for configuring LS1028ARDB in the openil directory, use the command below:
make nxp 1s1028ardb-64b defconfig

4. Then, configure the Linux kernel according to the steps listed below.

For DPAA devices:

» Disable the Linux DPAA driver using the settings below:

Smake linux-menuconfig
Device Drivers --->
[*] Staging drivers --->
[] Freescale Datapath Queue and Buffer management

+ Add the Xenomai RTnet driver and protocol stack using the commands below:

Smake linux-menuconfig
[*] Xenomai/cobalt --->
Drivers --->
RTnet --->
<M> RTnet, TCP/IP socket interface
Protocol Stack --->
<M> RTmac Layer --->
< > TDMA discipline for RTmac
< M > NoMAC discipline for RTmac
Drivers --->
<M> FMAN independent mode

For e1000e devices:

» Disable the Linux e1000e driver using the settings below:

Smake linux-menuconfig
Drivers --->
[*] Network device support --->
[*] Ethernet driver support --->
< > Intel (R) PRO/1000 PCI-Express Gigabit Ethernet support

+ Add the Xenomai RTnet driver and protocol stack using the commands below:

Smake linux-menuconfig
[*] Xenomai/cobalt ---> Drivers —--->
RTnet --->
<M> RTnet, TCP/IP socket interface Protocol Stack --->
<M> RTmac Layer --->

< > TDMA discipline for RTmac

<M> NoMAC discipline for RTmac Drivers --->
<M> New Intel (R) PRO/1000 PCIe (Gigabit)

For ENETC devices
+ Disable the Linux ENETC driver using the settings below:

Smake linux-menuconfig

Device Drivers —--->
Network device support --->
Ethernet driver support --->
< > ENETC PF driver
< > FELIX switch driver

Add the Xenomai RTnet driver and protocol stack using the commands below:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 130/237

NXP Semiconductors

Xenomai

Smake linux-menuconfig

[*] Xenomai/cobalt —--->
Drivers --->
RTnet --->
<M> RTnet, TCP/IP socket interface Protocol Stack --->
<M> RTmac Layer --->

< > TDMA discipline for RTmac
< M > NoMAC discipline for RTmac
Drivers --->
<M> ENETC

5. Now, run the make command to build all images.
6. After flashing images to the SD card, boot LS1043ARDB or LS1046ARDB from the SD card and enter the Linux prompt.
7. Edit the configuration file, located by default, in the /etc/rtnet.conf directory using the settings below:
a. DPAA devices
+ Master board
— RT_DRIVER="rt_fman_im” - The driver used (currently, it is 'rt_fman_im").
— IPADDR="192.168.100.101" - IP address of the master board.
— NETMASK="255.255.255.0" - The other slave board will have the IP 192.168.100.XXX.
— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102" - If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".

+ Slave board
— RT_DRIVER="rt_fman_im” - The driver used (currently, it is 'rt_fman_im").
— IPADDR="192.168.100.102" - IP address of the slave board.
— NETMASK="255.255.255.0" - net mask
— TDMA_MODE="slave"

— TDMA_SLAVES="192.168.100.102" - If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".

b. e1000e devices:
» Master board
— RT_DRIVER="rt_e1000e” - The driver used (currently, it is 'rt_e1000e").
— IPADDR="192.168.100.101" - IP address of the master board.
— NETMASK="255.255.255.0" - The other slave board will have the IP 192.168.100.XXX.
— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102" — If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".

+ Slave board
— RT_DRIVER= "rt_e1000e” - The driver used (currently, it is 'rt_e1000e").
— IPADDR="192.168.100.102" - IP address of the slave board.
— NETMASK="255.255.255.0" - net mask
— TDMA_MODE="slave"

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 131/237

NXP Semiconductors

Xenomai
— TDMA_SLAVES="192.168.100.102" - If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".
c. ENETC devices
* Master board
— RT_DRIVER="rt_enetc” - The driver used (currently, it is 'rt_enetc').
— IPADDR="192.168.100.101" - IP address of the master board.
— NETMASK="255.255.255.0" - The other slave board will have the IP 192.168.100.XXX.
— TDMA_MODE="master"

— TDMA_SLAVES="192.168.100.102" - If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".

+ Slave board
— RT_DRIVER="rt_enetc” - The driver used (currently, it is 'rt_enetc').
— IPADDR="192.168.100.102" - IP address of the slave board.
— NETMASK="255.255.255.0" - net mask
— TDMA_MODE="slave"

— TDMA_SLAVES="192.168.100.102" - If there are two slave boards, this will be
“192.168.100.102 192.168.100.103".

8.2.3 Verifying RTnet
Use the following steps to verify the RTnet connection:

» Step1: Load all modules related with Xenomai RTnet and analyze the configuration file both on master and slave sides.
$ rtnet start

» Use CTRL+ Ckey combination to exit after using the preceding command, if it does not exit on its own.

» Use the below command to display all ethernet ports. Currently, it should display four Ethernet ports (QSGMII Port 0 to Port
3) on master and slave:

$ rtifconfig -a
» Configure the network on the master side using the commands below:

$ rtifconfig rtethO up 192.208.100.101
$ rtroute solicit 192.208.100.102 dev rtethO

» Configure the network on the slave side using the command below:

$ rtifconfig rteth0 up 192.208.100.102

NOTE
If there are more than one slave boards, user should redo this step using the IP address of the used boards.

 Verify the network connection using the command below:

$ rtping 192.208.100.102

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 132/237

NXP Semiconductors

Chapter 9
EtherCAT

OpenlL supports the use of EtherCAT ((Ethernet for Control Automation Technology) and integrates the IGH EtherCAT master
stack. EtherCAT support is verified on NXP’s LS1021-IoT, LS1043ARDB, LS1046ARDB, and LS1028ARDB platforms.

9.1 Introduction

EtherCAT is an Ethernet-based fieldbus system, invented by BECKHOFF Automation. The protocol is standardized in IEC
61158 and is suitable for both hard and soft real-time computing requirements in automation technology. The goal during
development of EtherCAT was to apply Ethernet for automation applications requiring short data update times (also called cycle
times; < 100 ps) with low communication jitter (for precise synchronization purposes; < 1 ps) and reduced hardware costs.

» EtherCAT is Fast: 1000 dig. I/O: 30 s, 100 slaves: 100 ys.

» EtherCAT is Ethernet: Standard Ethernet at I/O level.

» EtherCAT is Flexible: Star, line, drop, with or without switch.

« EtherCAT is Inexpensive: ethernet is mainstream technology, therefore inexpensive.
» EtherCAT is Easy: everybody knows Ethernet, it is simple to use.

At present, the EtherCAT master supports the common open source code for SOEM of RT - LAB development (Simple Open
Source EtherCAT Master) and EtherLab, the IGH EtherCAT master. To use SOEM is simpler than to use the IGH EtherCAT
Master, but IGH for the realization of the EtherCAT is more complete. For example, IGH supports more NIC. For more information,
see https://rt-labs.com/ethercat/ and http://www.etherlab.org. The integration in OpenlL is IGH EtherCAT master.

9.2 IGH EtherCAT architecture

The components of the master environment are described below:

» Master module: This is the kernel module containing one or more EtherCAT master instances, the ‘Device Interface’ and
the ‘Application Interface’.

» Device modules: These are EtherCAT-capable Ethernet device driver modules that offer their devices to the EtherCAT
master via the device interface. These modified network drivers can handle network devices used for EtherCAT operation
and ‘normal’ Ethernet devices in parallel. A master can accept a certain device and then, is able to send and receive
EtherCAT frames. Ethernet devices declined by the master module are connected to the kernel's network stack, as usual.

« Application: A program that uses the EtherCAT master (usually for cyclic exchange of process data with EtherCAT
slaves). These programs are not part of the EtherCAT master code, but need to be generated or written by the user. An
application can request a master through the application interface. If this succeeds, it has the control over the master:

It can provide a bus configuration and exchange process data. Applications can be kernel modules (that use the kernel
application interface directly) or user space programs, that use the application interface via the EtherCAT library, or the
RTDM library.

The following figure shows that IGH EtherCAT master architecture.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 133/237

https://rt-labs.com/ethercat/
http://www.etherlab.org

NXP Semiconductors

EtherCAT

o~
LXRT | Xenomai =

§
Userspace 5
| \A,,;Fm ot
Userspace
------------------------- 1 M
Kemelspace

Application Module

=y

Wi jeeLgegy

g
Nas’

jearsigeg

|
RTDM Character
Devics Device
— |

Figure 30. IGH EtherCAT master architecture

- - = - N
EtherCAT Master Module £
Ethemet
Driver Module
" -
> Master 1 | §
28 \ w
¥ — e
g Mastar 0 g 2
5 2
— ﬁ'ﬁeneric]
—__| Ethermnet }———
) Device
Device
_ [Interface JoL
ecdav_* () netif * () | I
[
i I i
Mative EtherCAT-capable Ethemnet Diiver Standard
Ethemet Driver
i) -
net_device | net_device | net_device |
_
h N
NIC NIC NIC
m] O O
O | m}
EtherCAT Ethemet EtherCAT

gy e Py

9.3 EtherCAT protocol

Following are the characteristics of the EtherCAT protocol:

» The EtherCAT protocol is optimized for process data and is transported directly within the standard IEEE 802.3 Ethernet frame
using Ethertype 0x88a4.

» The data sequence is independent of the physical order of the nodes in the network; addressing can be in any order.

» Broadcast, multicast, and communication between slaves is possible, but must be initiated by the master device.

« If IP routing is required, the EtherCAT protocol can be inserted into UDP/IP datagrams. This also enables any control with
Ethernet protocol stack to address EtherCAT systems.

« It does not support shortened frames.

The following figure shows the EtherCAT frame structure.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

134 /237

NXP Semiconductors

EtherCAT

48bits 48bits 16bits !
EtherType 88a4h

16bits 48-1498Btes

-
—
-
-

| 10Bytes 0-1486 Bytes 2 Bytes— — _

Datagram Header I Data I WCK I WCK = Working Counter

- -
—

| ghits 8bits 32bits 11bits 3bits _ 1bit ~ “Thit = —16bi
| Cmd | ldx | Address | Len | R | C | M | IRQ I

Figure 31. EtherCAT frame structure

9.4 EtherCAT system integration and example
This section describes how to integrate EtherCAT with the OpenlL system and provides an example of running the
BECKHOFF application.
9.4.1 Building kernel images for EtherCAT
For LS1021A-loT, EtherCAT supports the following configuration files:
* nxp_Ils1021aiot_baremetal_defconfig
* nxp_ls1021aiot_baremetal_ubuntu_defconfig
* nxp_Is1021aiot_defconfig
* nxp_ls1021aiot_optee_defconfig
* nxp_Ils1021aiot_optee_ubuntu_defconfig
* nxp_ls1021aiot_ubuntu_defconfig.
For LS1043ARDB, EtherCAT supports the following configurations:
* nxp_ls1043ardb-64b_defconfig
* nxp_Ils1043ardb-64b_ubuntu_defconfig
* nxp_ls1043ardb_baremetal-64b_defconfig.
For LS1046ARDB, EtherCAT supports the following configurations:
* nxp_ls1046ardb-64b_defconfig
* nxp_Ils1046ardb-64b_qgspi_defconfig
* nxp_ls1046ardb-64b_qgspi-sb_defconfig
* nxp_Ils1046ardb-64b_ubuntu_defconfig
* nxp_ls1046ardb_baremetal-64b_defconfig.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 135/237

NXP Semiconductors

EtherCAT

Use the command below to build image supporting EtherCAT (example: nxp_Ils1046ardb-64b_defconfig):

$ make nxp_ lsl046ardb-64b_defconfig

S make

Then, flash the image to SD card and reboot the board with this card and SD boot.

9.4.2 Command-line tool

Each master instance gets a character device as a userspace interface. The devices are named /dev/EtherCATx, Where x is the

index of the master.

Device node creation The character device nodes are automatically created, if the startup script is executed. The following
example illustrates the command-line tools:

Table 44. Command line tools for EtherCAT

Command Description Arguments Output
ethercat config Shows slave Options: Without the -- verbose option, slave
[OPTIONS] configurations. . . configurations are output one -per - line. For
« --alias -a <alias >
Configuration alias example, the output for1001:0 0 x0000003b /0
x02010000 3 would be displayed as follows:
(see above)
- » 1001:0 -> Alias address and relative
* --position -p <pos ”)
> Relative position position (both decimal).
(see above). » 0x0000003b /0 x02010000 -> Expected
vendor ID and product code
» -- verbose -v Show .
detailed configurations. (both hexadecimal).
+ 3 -> Absolute decimal ring position of the
attached slave, or '-' if none attached.
+ OP -> Application — layer state of
the attached slave, or -, if no slave
is attached.
ethercat Shows master Options: "
aster0
master [OPTIONS] and. Ethellc'net . - master -m <indices > Phase: Idle
device information. |\ cter indices. A comma Active: no
- separated Slaves: 8
Ethernet devices:
list with ranges is supported. Main:
Example: 1 4 5.7 -9, 00:00:08:44: ab :66 I(attached)
. Link: UP
Default: - (all). e Fremee
18846
Tx bytes:
1169192
Rx frames:
18845
Rx bytes:
1169132
Tx errors: 0
Tx frame rate
[1/s]: 125 395 241
Tx rate
Table continues on the next page...
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 136 /237

NXP Semiconductors

EtherCAT
Table 44. Command line tools for EtherCAT (continued)

[KByte/s]: 7.3 24.0 14.6

Rx frame rate
[1/s]: 125 395 241

Rx rate
[KByte/s]: 7.3 24.0 14.6

Common :

Tx frames:

18846

Tx bytes:
1169192

Rx frames:
18845

Rx bytes:
1169132

Lost frames: O

Tx frame rate
[1/s]: 125 395 241

Tx rate
[KByte/s]: 7.3 24.0 14.6

Rx frame rate
[1/s]: 125 583 241

Rx rate
[KByte/s]: 7.3 210.4 14.6

Loss

rate [1/s]:
0 -0 0
Frame loss
0.0 -0.0 0.0
Distributed clocks:

o°

Reference clock:

Slave O
Application time:
0
ethercat states Requests STATE can be 'INIT None
[OPTIONS] <STATE > | application - layer ' 'PREOP ', 'BOOT ',
states 'SAFEOP ', or 'OP .

Options:
» --alias -a <alias >
e -- position -p <pos >
Slave selection. See

the help of the 'slaves'
command.

NOTE

» Numerical values can be specified either with decimal (no prefix), octal (prefix '0') or hexadecimal (prefix '0x

") base.

* More command-line information can be obtained by using the command ethercat —-help.

9.4.3 System integration

An init scriptand a sysconfig file are provided to integrate the EtherCAT master as a service into a running system. These are

described below.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

137/237

NXP Semiconductors

.

EtherCAT

Init Script

The EtherCAT master init script conforms to the requirements of the 'Linux Standard Base' (LSB). The script is installed
to etc/init.d/EthercaT, before the master can be inserted as a service. Please note, that the init script depends on the
sysconfig file described below.

LSB defines a special comment block to provide service dependencies (that is, which services should be started before others)
inside the init script code. System tools can extract this information to insert the EtherCAT init script at the correct place in the
startup sequence:

Required - Start: S$local fs $syslog Snetwork
Should - Start: $time ntp

Required - Stop: $local fs $syslog $network
Should - Stop: $time ntp

Default - Start: 3 5

Default - Stop: 0 1 2 6

Short - Description: EtherCAT master

Description: EtherCAT master 1.5.2

END INIT INFO

» Sysconfig file

For persistent configuration, the init script uses a sysconfig file installed to etc/sysconfig/EthercAT, that is mandatory for
the init script. The sysconfig file contains all configuration variables needed to operate one or more masters. The documentation
is inside the file and included below:

Main Ethernet devices.

#

#
#
#
#
#
#
#
#
#
#
#
#
#

The MASTER <X> DEVICE variable specifies the Ethernet device for a master
with index 'X '.

Specify the MAC address (hexadecimal with colons) of the Ethernet device to
use. Example: "00:00:08:44: ab :66"

The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning : It tells
the master to accept the first device offered by any Ethernet driver.

The MASTER <X> DEVICE variables also determine, how many masters will be
created: A non - empty variable MASTERO DEVICE will create one master, adding a
non - empty variable MASTER1 DEVICE will create a second master, and so on.

MASTERO DEVICE =""

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

MASTER1 DEVICE =""

Backup Ethernet devices

The MASTER <X> BACKUP variables specify the devices used for redundancy. They
behaves nearly the same as the MASTER <X> DEVICE variable, except that it
does not interpret the ff:ff:ff:ff:ff:ff address

MASTERO BACKUP =""

Ethernet driver modules to use for EtherCAT operation.

Specify a non - empty list of Ethernet drivers, that shall be used for
EtherCAT operation.

Except for the generic Ethernet driver module, the init script will try to

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 1387237

NXP Semiconductors

unload the usual Ethernet driver modules in the list and replace them with
the EtherCAT - capable ones. If a certain (EtherCAT - capable) driver is not
found, a warning will appear.

#

Possible values: 8139 too, €100, 1000, e1000e, r8169, generic, ccat, igb.
Separate multiple drivers with spaces.

#

Note: The €100, e1000, e1000e, r8169, ccat and igb drivers are not built by
default. Enable them with the --enable -<driver > configure switches.

#

Attention: When using the generic driver, the corresponding Ethernet device
has to be activated (with OS methods, for example 'ip link set ethX up '),
before the master is started, otherwise all frames will time out.

#

DEVICE MODULES =""

#

Flags for loading kernel modules.

#

This can usually be left empty. Adjust this variable, if you have problems
with module loading.

#

MODPROBE FLAGS ="-b"

__

EtherCAT

Starting the Master as a service: After the init scriptand the sysconfig file are placed into the right location, the EtherCAT master
can be inserted as a service.The init script can also be used for manually starting and stopping the EtherCAT master. It should

be executed with one of the parameters: start, stop, restart or status. For example:

$/etc/init.d/EtherCAT restart
Shutting down EtherCAT master done
Starting EtherCAT master done

9.4.4 Running a sample application

This section describes how to run a sample application.

List of materials

Following is the list of materials needed for running the Igh EtherCAT application:
+ OpenlL board (LS1021-loT, LS1043ARDB, and LS1046ARDB)
+ BECKHOFF EK1100 and EL2008
* 24V Power Supply

The figures below show the required materials:

» The figure below shows the board and BECKHOFF connected by a Ethernet cable.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

139/237

NXP Semiconductors

EtherCAT

i

Figure 32. Board connects with BECKHOFF

» The figure below shows the BECKHOFF's EK1100 and EL2008.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 140/ 237

NXP Semiconductors

EtherCAT

[=

Figure 33. BECKHOFF EK1100 and EL2008

For more information about EL2008, see https://www.beckhoff.com/english.asp?ethercat/el2008.htm.
Follow the steps below to run a sample application:

1. Update the sysconfig file etc/sysconfig/EtherCAT for the persistent configuration.Variables MasTERO DEVICE and
DEVICE MODULES need to be changed to the specified MAC and driver type. The MAC address is the one that is
connected to BECKHOFF.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 141 /237

https://www.beckhoff.com/english.asp?ethercat/el2008.htm

NXP Semiconductors

EtherCAT

For example, the MAC used is 00:00:08:44: ab :66 and the drivers used are generic:

MASTERO_DEVICE ="00:00:08:44: ab :66"
DEVICE MODULES ="generic"

2. Execute the initialization script and specify the parameter start.

$ /etc/init.d/ethercat restart

3. Run the example application.
$ ec _user example

« Ifthe init script fails to start EtherCAT master, the command insmod or modprobe can be used to load the module
directly: ec_master.ko and ec_generic.ko are found in the path /1ib/modules/4.9.35-ipipe/extra/

$ insmod ec _master.ko main devices= MAC address

$ insmod ec_generic.ko

* Run the example application.
$ ec_user example

» Check whether the LEDO on EL2008 is blinking with 1Hz.

ATTENTION
If the console prompts Failed to open /dev/EtherCATO, the module fails to load, please check it.

9.5 NXP servo stack

nxp-servois a CiA402 (also referred to as DS402) profile framework based on Igh CoE interface (An EtherCAT Master stack, see
EtherCAT section for details). It abstracts the CiA 402 profile and provides an easily-usable API for the Application developer.

The nxp-servo project consists of a basic library /ibnservo and several auxiliary tools.

The application developed with /ibnservo is flexible enough to adapt to the changing of CoE network by modifying the xm/config
file, which is loaded when the application starts. The xm/ config file describes the necessary information, including EtherCAT
network topology, slaves configurations, masters configurations and all axles definitions.

9.5.1 COoE network

A typical CoE network is shown in the figure below:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 142 /237

NXP Semiconductors

EtherCAT

| Axle 0 H Axle 1 ‘ Axle 2

#xle 3 ‘

Figure 34. CoE network

| Slave 0 [Slave 1 Slave 2 ‘
Master 0 \
position 0 position 1 position 2
LA
FAxle O - s
3 .
m Lxle 2 Axle 3
Axle 1
CoE servo CoE servo CoE servo

CoE network

There are three CoE servos on this network and we name them slave xas the position they are. Each CoE servo could have more
then one axle. The libnservo then initiates the CoE network and encapsulates the detail of network topology into axle nodes. So
the developer could focus on the each axle operation without taking care of the network topology.

9.5.2 Libnservo Architecture

nxp-servo is running on top of /gh EtherCAT stack. And the /gh stack provides CoE communication mechanisms - Mailbox and
Process Data. Using these mechanisms, nxp-servo could access the CiA Object Dictionary located on CoE servo.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

143 /237

NXP Semiconductors

EtherCAT

P

Application] - xml config

J

P

libnservo API

P

Control task I | xml parser

CiA402 Object Dictionary

libnservo

|
_l
|

(| SDO | [PDO Mapping

| Process Data

Mailbox

| FMMUs

\,
e -~

l Ilgh CokE

| Sync managers

‘ Interface

{ EtherCAT Physicél Layer

libnservo Architecture

Figure 35. Libnservo architecture

Control task initiates the master, all slaves on the CoE network and registers all PDOs to Igh stack, then constructs a data structure
to describe each axle. Finally, the control task creates a task to run the user task periodically.

9.5.3 Xml Configuration
This section focuses on how the xml config file describes a CoE network.

The skeleton of XML config is shown as in figure below:

<?xml version="1.0" encoding="utf-8"?>
<Config Version="1.2">
<PeriodTime>#10000000</PeriodTime>
<MaxSafeStack>#8192</MaxSafeStack>
<master status update freg>#l</master status update freg>
<slave status_update fregq>#1</slave_ status_update freg>
<axle status_update freg>#1</axle status_update freg>
<sync_ref update freg>#2</sync_ref update freg>
<is_xenomai>#1</is_xenomai>
<sched priority>#82</sched priority>
<Masters>
<Master>
<\Master>
<Master>
<\Master>
<\Master>

<Axles>

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

144 /237

NXP Semiconductors

EtherCAT
<Axle>
<\Axle>
<Axle>
<\Axle>
<\Axles>
</Config>
+ All config elements must be inside the <Config> element.
 All config elements shown above are mandatory.
» The numerical value started with # means that it is a decimal value.
* The numerical value started with#x means that it is a hexadecimal value.
» <PeriodTime> element means that the period of control task is 10ms.
» <MaxSafeStack> means the stack size, and it is an estimated value. 8K is enough to satisfy most application.

» <master_status_update_freq> element means the frequency of masters status update. the value #x means update the
masters status every task period.

» <slave_status_update_freq> element means the frequency of slaves status update. the value #1 means update the slaves
status every task period.

» <axle_status_update_freq> element means the frequency of axles status update. the value #1 means update the axles status
every task period.

« <sync_ref_update_freq> element means the frequency of reference clock update. the value #2 means update the axles status
every two task period.

» <is_xenomai> element means whether Xenomai is supported. the value #1 means that Xenomai is supported on this host,
and #0 means not.

» <sched_priority> element means the priority of the user task.
» <Masters> element could contain more then one Master element . For most cases, there is only one master on a host.

» <Axles> element could contain more then one Axle element, which is the developer really care about.

9.5.3.1 Master Element

As CoE network section shown, the Master could has many slaves, so the Master element will consist of some S/ave elements.

<Master>
<Master index>#0</Master index>
<Reference clock>#0</Reference clock>
<Slave alias="#0" slave position="#0">

</Slave>
<Slave alias="#1" slave position="#1">
</Slave>
</Master>
» <Master_index> element means the index of the master. as mentioned above, for many cases, there is only one master, so
the value of this element is always #0.
» <Reference_clock> element is used to indicate which slave will be used the reference clock.

» <Slave> element means there is a slave on this master.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 145/ 237

NXP Semiconductors

EtherCAT

9.5.3.1.1 Slave Element

<Slave alias="#0" slave position="#0">
<VendorId>#x66668888</VendorId>
<ProductCode>#x20181302</ProductCode>
<Name>2HSS458-EC</Name>
<Emerg_ size>#x08</Emerg size>
<WatchDog>
<Divider>#x0</Divider>
<Intervals>#4000</Intervals>

</WatchDog>
<DC>
<SYNC SubIndex='#0">
<Shift>#0</Shift>
</SYNC>
</DC>

<SyncManagers force pdo assign="#1">
<SyncManager SubIndex="#0">

</SyncManager>
<SyncManager SubIndex="#1">

</SyncManager>
</SyncManagers>
<Sdos>

<sdo>

</Sdo>
<Sdo>

;;édo>

</Sdos>

</Slave>
* alias attribute means the alias name of this slave.
* slave_position attribute means which position of the slave is on this network.
+ <Name>element is the name of the slave.
» <Emerg_size> element is always 8 for all CoE device.
« <WatchDog> element is used to set the watch dog of this slave.
» <DC> element is used to set the sync info.
» <SyncManagers> element should contain all syncManager channels.

» <Sdos> element contains the default value we want to initiate by SDO channel.

9.5.3.1.1.1 SyncManagers Element

For a CoE device, there are generally four syncManager channels.
* SMO: Mailbox output
* SM1: Mailbox input
» SM2: Process data outputs

» SM3: process data inputs

<SyncManager SubIndex="#2">
<Index>#x1cl2</Index>

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 146 /237

NXP Semiconductors

<Name>Sync Manager 2</Name>

<Dir>OUTPUT</Dir>

<Watchdog>ENABLE</Watchdog>

<PdoNum>#1</PdoNum>

<Pdo SubIndex="#1">
<Index>#x1600</Index>
<Name>RxPdo 1</Name>
<Entry SubIndex="#1">
</Entry>
<Entry SubIndex="#2">
</Entry>

</Pdo>

</SyncManager>

» <Index> element is the object address.
* <Name> is a name of this syncmanager channel.
» <Dir> element is the direction of this syncmanager channel.

» <Watchdog> is used to set watchdog of this syncmanager channel.

* <PdoNum> element means how many PDO we want to set.

» <Pdo Sublndex="#1> element contains the object dictionary entry we want to mapped.

— <Index> PDO address.
— <Name> PDO name

— <Entry> the object dictionary we want to mapped.

The Entry element is used to describe a object dictionary we want to mapped.

<Entry SubIndex="#1">
<Index>#x6041</Index>
<SubIndex>#x0</SubIndex>
<DataType>UINT</DataType>
<BitLen>#16</BitLen>
<Name>statusword</Name>
</Entry>

9.5.3.1.1.2 Sdo Element

The Sdo element is used to set the default value of a object dictionary.

<Sdo>
<Index>#x6085</Index>
<Subindex>#x0</Subindex>
<value>#x1000</value>
<BitLen>#32</BitLen>
<DataType>DINT</DataType>
<Name>Quick stop deceleration</Name>

</Sdo>

The element shown in figure above means set the Object Dictionary "6085" to 0x1000.

Open Industrial User Guide, Rev. 1.9, 09/2020

EtherCAT

User's Guide

147 /237

NXP Semiconductors

EtherCAT

9.5.3.2 Axle Element

<Axle master_index='#0' slave position="#0" AxleIndex="#0" AxleOffset="#0">
<Mode>pp</Mode>
<Name>x-axle</Name>
<reg pdo>

</reg pdo>
<reg_pdo>
</reg pdo>
</Axle>
» master_index attribute indicates which masterthis ax/e belong to.
* Slave_position attribute indicates which s/ave this ax/e belong to.

* Ax/eOffsetattribute indicates which ax/e this ax/eis on the slave. As mentioned above, a CoE slave could have more then on
axle . If this axle is the second axle on the slave, set Ax/eOffset="#1".

* <Mode> means which mode this axle will work on.
* <Name> is the name of this axle.
» <reg_pdo> is the PDO entry we want to register.

reg_pdo element

<reg_ pdo>
<Index>#x606c</Index>
<Subindex>#x0</Subindex>
<Name></Name>

</reg pdo>

9.5.4 Test

9.5.4.1 Hardware Preparation
» A CoE servo system

A CoE servo system includes a CoE servo and a motor. In this test, '2HSS458-EC' servo system shown as in figure below
will be used.

* A board supported on OpenlL
In this test, LS1046ARDB will be used.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 148 /237

NXP Semiconductors

EtherCAT

2HS5458-EC Servo System

9.5.4.2 Software Preparation

Make sure the below config options is selected when configuring OpenliL.
+ BR2_PACKAGE_IGH_ETHERCAT=y
+ BR2_PACKAGE_LIBXML2=y
*» BR2_PACKAGE_QORIQ_SERVO=y

9.5.4.3 CoE Network Detection
* Igh configuration
— Configure the MASTERO_DEVICE field of the /efc/ethercat.conf
Set MASTERO_DEVICE to the MAC address to indicate which port the Igh uses .
— Configure DEVICE_MODULES="generic" of the /etc/ethercat.conf

» Using the command
[root@OpenIL:~]#ethercatctl start

to start Igh service.

» Check CoE servo using below command.

[root@0OpenIL:~]#ethercat slaves
0 0:0 PREOP + 2HSS458-EC

9.5.4.4 Start Test

Note: The Position encoder resolution and Velocity encoder resolution of "2HSS458-EC" servo system are both 4000 . It means
the ratio of encoder increments per motor revolution.

* Profile Position mode test

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 149 /237

NXP Semiconductors

— Start the test service as below.

[root@OpenIL:~]# nservo_run -f /root/nservo_example/hss248 ec config pp.xml &

— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root@OpenIL:~]# ethercat slaves

0

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

0:0 OP + 2HSS458-EC

[root@OpenIL:~]# ethercat master | grep Phase

Phase: Operation

— Run below commands to test whether the motor works.

o

o

o

o

o

Get current mode of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get mode
get mode of the axle 0 : Profile Position Mode

Get current position of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get position
get current position of the axle 0 : 0

Get the profile speed of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get profile speed
get profile speed of the axle 0 : 800000

The value 800000 means 200 revolutions per second.

Set profile speed of axle 0.

[root@OpenIL:~]# nservo_client -a 0 -c set profile speed:20000
set profile speed of the axle 0 : 20000

Set profile speed to 5 revolutions per second.

Set target position of axle 0

[root@OpenIL:~]# nservo client -c set position:400000
set position of the axle 0 : 400000

The value 400000 means that the motor will turn 100 rounds.
(target_position:400000 - current_position:0) / 4000 = 100

Get current speed of axle 0

[root@OpenIL:~]# nservo client -a 0 -c get speed
get speed of the axle 0 : 19999

Get target position of axle 0

[root@OpenIL:~]# nservo client -a 0 -c get target position
get target position of the axle 0 : 400000

Open Industrial User Guide, Rev. 1.9, 09/2020

EtherCAT

User's Guide

150/237

NXP Semiconductors

EtherCAT
— Exit
[root@OpenIL:~]# nservo client -c exit

* Profile Velocity mode test

— Start the test service as below.
[root@OpenIL:~]# nservo run -f /root/nservo example/hss248 ec config pv.xml &
— Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root@OpenIL:~]# ethercat slaves
0 0:0 OP + 2HSS458-EC

— Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root@OpenIL:~]# ethercat master | grep Phase
Phase: Operation

— Run below commands to test whether the motor works.

> Get current mode of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get mode
get mode of the axle 0 : Profile Velocity Mode

> Set target speed of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c set speed:40000
set speed of the axle 0 : 40000

The value 40000 means that the motor will turn with 10 revolutions per second.

> Get current speed of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get speed
get speed of the axle 0 : 32000

> Get target speed of axle 0.

[root@OpenIL:~]# nservo client -a 0 -c get target speed
get target speed of the axle 0 : 40000

— Exit

[root@OpenIL:~]# nservo client -c exit

9.6 EdgeScale client

EdgeScale is a unified, scalable, and secure device management solution for Edge Computing applications. It enables OEMs and
developers to leverage cloud compute frameworks like AWS Greengrass, Azure loT and Aliyun on Layerscape devices. It provides
the missing piece of device security and management needed for user to securely deploy and manage a large number of Edge
computing devices from the cloud. End-users and developers can use the EdgeScale cloud dash board to securely enroll Edge
devices, monitor their health, attest and deploy container applications and firmware updates.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 151 /237

NXP Semiconductors

Chapter 10
OPC UA

OPC (originally known as “OLE for Process Control”, now “Open Platform Communications”) is a collection of multiple
specifications, most common of which is OPC Data Access (OPC DA).

OPC Unified Architecture (OPC UA) was released in 2010 by the OPC Foundation as a backward incompatible standard to OPC
Classic, under the name of IEC 62541.

OPC UA has turned away from the COM/DCOM (Microsoft proprietary technologies) communication model of OPC Classic, and
switched to a TCP/IP based communication stack (asynchronous request/response), layered into the following:

* Raw connections
« Secure channels

» Sessions

10.1 OPC introduction
OPC UA defines:
» The transport protocol for communication (that can take place over HTTP, SOAP/XML or directly over TCP).

» A set of 37 'services' that run on the OPC server, and which clients call into, via an asynchronous request/response
RPC mechanism.

» A basis for creating information models of data using object-oriented concepts and complex relationships.
The primary goal of OPC is to extract data from devices in the easiest way possible.

The Information Modelprovides a way for servers to not only provide data, but to do so in the most self-explanatory and intuitive
way possible.

NOTE
Further references to 'OPC' in this document will imply OPC UA. OPC Classic is not discussed in this document.
Following are the typical scenarios for embedding an OPC-enabled device into a project:

» Manually investigate (“browse”) the server’'s Address Space looking for the data user need using a generic, GUI client (such
as UaExpert from Unified Automation, or the FreeOpcUa covered in this chapter).

» Using References and Attributes, understand the format it is in, and the steps that may be needed to convert the data.

» Have a custom OPC client (integrated into the application) subscribe directly to data changes of the node that contains the
desired data.

In a typical use case:

» The OPC server runs near the source of information (in industrial contexts, this means near the physical process — for
example, on a PLC on a plant floor).

« Clients consume the data at run time (for example, logging into a database, or feeding it into another industrial process).

OPC-enabled applications can be composed: an industrial device may run an OPC client and feed the collected data into another
physical process, while also exposing the latter by running an OPC server.

10.2 The node model

Data in an OPC server is structured in Nodes. The collection of all nodes that an OPC server exposes to its clients is known as
an Address Space. Some nodes have a predefined meaning, while others have meaning that is unique to the /nformation Mode/
of that specific OPC server.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 152 /237

NXP Semiconductors

OPC UA

Every Node has the following Aftributes:
* an /D (unique)
* a Class (what type of node it is)
* a BrowseName (a string for machine use)

* a DisplayName (a string for human use)

Figure 36. OPC UA address space

o0 FreeOpcUa Client

opc.tep://192.168.15.4:16664 ~ | Connect options|| Connect || Disconnect
Attributes B
DisplayName BrowseName Nodeld -
~ & Root 0:Root i=84 Attribute - Value DataType
~ B Objects 0:0bjects i=85 BrowseName 1:5JA1105 QualifiedName
» @ server 0:Server i=2253 Description LocalizedText
SJA1105 TSN Switch 1:5JA1105 ns=1;i=118 DisplayMame SJA1105 TSN Switch LocalizedText
~ B Types 0:TyDES =86 EventNotifier) Byte
- ;y%ataTypes O:D):::aTypes i=90 NodeClass Object Int32
- ’ -~ Nodeld‘ ns=1;i=118 Nodeld
T BaseDataType 0:BaseDataType i=24 UserwWriteMask uint32
- Boolean 0:Boolean i=1 WriteMask Uint32
T ByteString 0:ByteString i=15
-1 DataValue 0:DataValue i=23
» =1 DateTime 0:DateTime i=13
» -1 Diagnosticinfo 0O:Diagnosticinfo =25
» =1 Enumeration 0:Enumeration i=29
» -1 ExpandedNodeld 0:ExpandedModeld i=18
» 1 Guid 0:Guid i=14 Reiesh
» -1 LocalizedText 0:LocalizedText i=21 e
» ¥ Nodeld 0:Nodeld i=17 ST B
» <1 Number 0:Number i=26
» o QualifiedName 0:QualifiedName =20
» =T StatusCode 0:StatusCode i=19
» =1 String 0:String i=12
b =1 Structure 0:Structure i=22
» =1 XmlElement 0:XxmlElement i=16
» B EventTypes 0:EventTypes i=3048
» B ObjectTypes 0:0bjectTypes i=88
» B2 ReferenceTypes O:ReferenceTypes =91
» 2 VariableTypes O:VariableTypes =89
» B views o:Views i=87
Events | subscriptions | References
(E]ES)

uaclient.uaclient - INFO - Connecting to opc.tcp://192.168.15.4:16664 with parameters None, None, , ')

Shown on the left-hand side of the figure is the Address Space (collection of information that the server makes available to clients)
of the OPC server found at opc.tcp://192.168.15.4:16664.

Selected is a node with NodelD ns=1;i=118, BrowseName=1:5J21105 and of NodeClass object.

The full path of the selected node is 0:Root, 0:0bjects, 1:SJAL105.

10.3 Node Namespaces
Namespaces are the means for separating multiple Information Models present in the same Address Space of a server.
» Nodes that do not have the ns= prefix as part of the NodelD have an implicit ns=0; prefix (are part of the namespace zero).

* Nodes in namespace *Ohave NodelD’s pre-defined by the OPC UA standard. For example, the 0:server object, which holds
self-describing information (capabilities, diagnostics, and vendor information), has a predefined NodelD of ns=0;i=2253;.

It is considered a good practice to not alter any of the nodes exposed in the namespace * 0.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 153 /237

NXP Semiconductors

OPC UA

10.4 Node classes
OPC nodes have an inheritance model, based on their NodeClass.
There are eight base node classes defined by the standard:
* Object
» Variable
* Method
* View
» ObjectType
* VariableType
» ReferenceType
* DataType

All nodes have the same base Attributes (inherited from the Node object), plus additional ones depending on their NodeClass.

10.5 Node graph and references

It may appear that nodes are only chained hierarchically, in a simple parent-child relationship. However, in reality nodes are
chained in a complex directed graph, through References to other nodes.

References
(Abstract, Symmetric)

NonHierarchicalReferences
(Abstract, Symmetric)

HierarchicalReferences
(Abstract)

| HasNotifier | i HasTypeDefinition I | HasDescription |

HasChild
(Abstract)

 J
| HasSubtype ‘ | HasEventSource | | HasModellingRule ‘ | HasEncoding ‘ | GeneratesEvent ‘

l Organizes ‘

Aggregates
(Abstract)
[HasComponent ‘ ‘ HasProperty | AlwaysGeneratesEvent

HasOrderedComponent

Figure 37. Hierarchy of the standard ReferenceTypes, defined in Part 3 of the OPC UA specification (Image taken
from www.open62541.org)

In OPC, even ReferenceTypes are Nodes, and as such are structured hierarchically, as can be seen in the figure above.
The definitions of all OPC ReferenceTypes can be found under the 0:Root, 0: Types, 0:ReferenceTypes path.

The semantics of OPC references can be enriched by creating custom ReferenceType nodes.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 154 /237

NXP Semiconductors

OPC UA

[X J FreeOpcUa Client

opc.tep://192.168.15.4:16664

DisplayName

~ = Types
»

self. show_value attr(attr, dv)
File "fusr/local/lib/python3.5/dist-packages/uawidgets/attrs_widget.py", line 188, in _show_value_attr
items = self._show_val(name_item, None, "Value", dvValue.value, dvValuevariantType)

File "fucrflncal lih/muthana & /dick-narkanac fuawidnate/attre_widner m" line 205 in" chow val

» @ RGMIIO
» @ RGMIIN
» @ RGMII2
» @ RGMII3
RGMII4
» B Chassis Label
» @ Traffic Counters

DataTypes
EventTypes
ObjectTypes
~ & BaseObjectType
» & FolderType
» & ModellingRuleType
» & servercapatilitiesType
» & ServerDiagnosticsType
» & serverType
» & EthPortType
» & TSNSwitchType
~ & ReferenceTypes
~ o1 References
~ o1 HierarchicalReferences
~ 1 HasChild
v o Aggregates

mwm

~ e HasComponent
+1 HasOrderedComponent
« HasHistoricalConfiguration

#r HasProperty O:HasProperty =46

1 HasSubtype 0:HasSubtype =45

~ 1 HasEventSource 0:HasEventSource i=36

1 HasNotifier 0O:HasNotifier i=48

#1 Organizes 0:0rganizes i=35

~ #1 NonHierarchicalReferences 0:NonHierarchicalReferences i=32

=1 FromState 0:FromState i=51

T GeneratesEvent 0:GeneratesEvent i=41

*1 HasCause 0:HasCause i=53

»r HasDescription 0:HasDescription =39

+1 HasEffect 0:HasEffect i=54

- HasEncoding 0:HasEncoding i=38

1 HasModelParent 0:HasModelParent i=50

+1 HasModellingRule 0:HasModellingRule i=37

- HasTypeDefinition 0:HasTypeDefinition i=40

- TaState OTaState i=52
e e e At

BrowseName Nodeld
1:RGMIIO

1T:RGMIIT

1:RGMII2

1:RGMII3

1:RGMII4

1:ChassisLabel
1:Counters

0Types

0:DataTypes
0:EventTypes
0:0bjectTypes
0:BaseObjectType
0:FolderType
o:ModellingRuleType
O:ServerCapatilitiesType
0:ServerDiagnosticsType
O:serverType
1:EthPortType
1:TSNSwitchType H
0:ReferenceTypes =91

O:References =31
O:HierarchicalReferences =33
0:HasChild i=34
0:Aggregates =44
0:HasComponent =47

0:HasOrderedComponent =49
O:HasHistoricalConfiguration =56

~ || Connect options || Connect | | Disconnect

Attributes B®
Attribute ~ Value DataType
BrowseName 1:RGMII4 QualifiedName
Description LocalizedText
DisplayName RGMII4 LocalizedText
EventNotifier Byte
NodeClass Object Int32
Nodeld ns=1;i=197 Nodeld
UserwriteMask uint32
WriteMask Ulnt32
Refresh
References =1
ReferenceType Nodeld BrowseName TypeDefinition
1/ HasTypeDefinition ns=1;i=117 1:EthPortType Null
2|HasComponent ns=1;i=198 1:ChassisLabel BaseDataVariableType
3 HasComponent ns=1;i=189 1:Counters BaseObjectType
Events Subscriptions =~ References
@&

Figure 38. The 'Attributes’ and 'References' views of the FreeOpcUa Client populated with details of the RGMII4 node

Selected in the Address Space is node ns=1; i=197. Conceptually, this represents one of the five Ethernet ports of the SJA1105

TSN switch

Its NodeClass is Object, but it has a reference of type HasTypeDefinition to NodelD ns=1;i=117 which is 1:EthPortType. For
this reason, the 1:rcM114 node is of the custom ObjectType EthPortType.

10.6 Open62541

OpenlL integrates the Open62541 software stack (https://open62541.org/). This supports both server-side and client-side API for
OPC UA applications. Only server-side capabilities of open62541 are being shown here.

Open62541 is distributed as a C-based dynamic library (libopen62541.s0). The services run on pthreads, and the application code
runs inside an event loop.

Enable open62541 in OpeniL with command "make menuconfig":

Target packages
OPC UA tools

When building with the BR2_PACKAGE_LIBOPEN62541_BUILD_EXAMPLES flag, the following Open62541 example

[*]

-——>
-—=>
libopen62541

Select build artefacts
[*] Build example servers and clients

-—>

applications are included in the OpenlL target image:

* open62541_access_control_client

* 0pen62541_access_control_server

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

155/237

https://open62541.org/

NXP Semiconductors

OPC UA

* open62541_client

* open62541_client_async

* open62541_client_connect

* open62541_client_connectivitycheck_loop
* open62541_client_connect_loop

* open62541_client_subscription_loop

* open62541_custom_datatype_client

* open62541_custom_datatype_server
* open62541_server_ctt

* open62541_server_inheritance

* open62541_server_instantiation

* open62541_server_loglevel

* open62541_server_mainloop

* 0pen62541_server_nodeset

* open62541_server_repeated_job

* open62541_tutorial_client_events

* open62541_tutorial_client_firststeps

* open62541_tutorial_datatypes

* open62541_tutorial_server_datasource
» open62541_tutorial_server_firststeps

» open62541_tutorial_server_method

* 0pen62541_tutorial_server_monitoreditems
* open62541_tutorial_server_object

* open62541_tutorial_server_variable

» open62541_tutorial_server_variabletype

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 156 /237

NXP Semiconductors

Chapter 11
FlexCAN

The following sections provide an introduction to the FlexCAN standard, details of the CAN bus, the Canopen communication
system, details of how to integrate FlexCAN with OpenlL, and running a FlexCAN application.

11.1 Introduction

Both the LS1021A and LS1028A boards have the FlexCAN module. The FlexCAN module is a communication controller
implementing the CAN protocol according to the CAN 2.0 B protocol specification. The main sub-blocks implemented in the
FlexCAN module include an associated memory for storing message buffers, Receive (Rx) Global Mask registers, Receive
Individual Mask registers, Receive FIFO filters, and Receive FIFO ID filters. A general block diagram is shown in the following
figure. The functions of these submodules are described in subsequent sections.

g - 'I
1 Peripheral Bus Interface Address, Data, Clocks, Interrupts I
I h 4 1
1 1
' I
I Reqgisters I
1
1 1
; CAN Control !
| Host Interface Message | |
1 Buffers !
| " mes) |1
I Tx Rx i
I Arbitration Matching RAM =
] I
1 1
1 1
1 1
: CAN Protocol Engine !
1 1
- 1
! Chip |
1 CAN Tx CAN Rx I
1

CAN Transceiver

- A

CAN Bus

Figure 39. FlexCAN block diagram

11.1.1 CAN bus

CAN (Controller Area Network) is a serial bus system. A CAN bus is a robust vehicle bus standard designed to

allow microcontrollers and devices to communicate with each other in applications without a host computer. Bosch published
several versions of the CAN specification and the latest is CAN 2.0 published in 1991. This specification has two parts; part A is
for the standard format with an 11-bit identifier, and part B is for the extended format with a 29-bit identifier. A CAN device that
uses 11-bit identifiers is commonly called CAN 2.0A and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B.

CAN is a multi-master serial bus standard for connecting Electronic Control Units [ECUs] also known as nodes. Two or more
nodes are required on the CAN network to communicate. The complexity of the node can range from a simple 1/0 device up to

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 157 1237

https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Multi-master_bus
https://en.wikipedia.org/wiki/Serial_bus

NXP Semiconductors

FlexCAN

an embedded computer with a CAN interface and sophisticated software. The node may also be a gateway allowing a standard
computer to communicate over a USB or Ethernet port to the devices on a CAN network. All nodes are connected to each other
through a two wire bus. The wires are a twisted pair with a 120 Q (nominal) characteristic impedance.

High speed CAN signaling drives the CAN high wire towards 5 V and the CAN low wire towards 0 V when transmitting a dominant
(0), and does not drive either wire when transmitting a recessive (1). The dominant differential voltage is a nominal 2 V. The
termination resistor passively returns the two wires to a nominal differential voltage of 0 V. The dominant common mode voltage
must be within 1.5 to 3.5 V of common and the recessive common mode voltage must be within +/-12 of common.

5v ———t——t—+—t—+———+—+—
— — — — DominantVoltage
CAN Hi
2.5v — Recessive Voltage
CAN Lo
T I T Dominant Voltage
Ov
Driver Logic
Figure 40. High speed CAN signaling
omplete CAN Frame
t—Arbkrauion Field _|<End of Frame
= 58§
R
dddddddddddd Gl22le i ameno
aaaaa VOOOLOUOO|OEERLECLT 22
c38558388E88¢odl3a82 EEEC28EE|5xxG002088lf £
olooloboo A

HI
CAN
Lo

Figure 41. Base frame format

|

\ N\
3 Rterm A)] & Rterm 2
Stub Length Stub Length

= [[e
1 CAN Node 1 1 CAN Node 1 1 CAN Node 1
1 : 1 : 1
. 1 . 1 . 1
—: Not Terminated 1 —: Not Terminated 1 —: Not Terminated 1
—— At Node : v 1A Node : v At Node :
! I 1 I 1 I
1 I 1 1 1 1
1 1 1 1 1 1
L [| I 1 | I 1

Figure 42. High speed CAN network

11.1.2 CANopen

CANopen is a CAN-based communication system. It comprises higher-layer protocols and profile specifications. CANopen has
been developed as a standardized embedded network with highly flexible configuration capabilities. Today it is used in various
application fields, such as medical equipment, off-road vehicles, maritime electronics, railway applications, or building automation.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 158 /237

NXP Semiconductors

FlexCAN

CANopen provides several communication objects, which enable device designers to implement desired network behavior into
a device. With these communication objects, device designers can offer devices that can communicate process data, indicate
device-internal error conditions or influence and control the network behavior. As CANopen defines the internal device structure,
the system designer knows exactly how to access a CANopen device and how to adjust the intended device behavior.

» CANopen lower layers

CANopen is based on a data link layer according to ISO 11898-1. The CANopen bit timing is specified in CiA 301 and allows
the adjustment of data rates from 10 kbit/s to 1000 kbit/s. Although all specified CAN-ID addressing schemata are based on
the 11-bit CAN-ID, CANopen supports the 29-bit CAN-ID as well. Nevertheless, CANopen does not exclude other physical
layer options.

« Internal device architecture

A CANopen device consists of three logical parts. The CANopen protocol stack handles the communication via the CAN
network. The application software provides the internal control functionality. The CANopen object dictionary interfaces the
protocol as well as the application software. It contains indices for all used data types and stores all communication and
application parameters. The CANopen object dictionary is mostimportant for CANopen device configuration and diagnostics.

» CANopen protocols
— SDO protocol
— PDO protocol
— NMT protocol
— Special function protocols
— Error control protocols

The following figure shows the CANopen architecture.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 159 /237

NXP Semiconductors

FlexCAN

CAN interface CAN interface

CAN driver

CAN transceiver

Figure 43. CANopen architecture

11.2 FlexCAN integration in OpenlL

For LS1021A, there are four CAN controllers. Two CAN controllers (CAN3 and CAN4) are used to communicate with each other.
CAN4 is assigned to core0, which runs Linux and CANOpen as master node, whereas CAN3 is assigned to core1, which runs the
baremetal and CANOpen as slave node. For LS1028A, there are two CAN controllers, CAN1 and CAN2, and both of them are

used in LS1028ARDB board.

11.2.1 LS1021AIOT CAN resource allocation

This section describes steps for assigning CAN4 to Linux and CAN3 to baremetal core, and how to change or configure it. These
examples assume that CAN1 and CAN2 are not enabled, and the pins of CAN1 and CAN2 are used by other IPs.

1. Assigning CAN4 to Linux

In Linux, the port is allocated through the DTS file. DTS file path is industry-1inux/arch/arm/boot/dts/1s1021a-
iot.dts. Content related to CAN ports is as follows:

/* CAN3 port */
&can?2

{

status = " disabled ";

}i

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide 160/ 237

NXP Semiconductors

FlexCAN

/* CAN4 port */
&can3
{
status = "okay";
}i

2. Assigning CAN3 to Baremetal

In baremetal, the port is allocated through the f1excan.c file. The flexcan.c path is industry-uboot/drivers/flexcan/
flexcan.c. In this file, user need to define the following variables:

a. struct can_bittiming t flexcan3 bittiming = CAN_BITTIM INIT (CAN_500K) ;

NOTE
Set bit timing and baud rate (500K) of the CAN port.

b. struct can_ctrimode_t flexcan3_ctrimode

struct can ctrlmode t flexcan3 ctrlmode =

{
.loopmode = 0, /* Indicates whether the loop mode is enabled */
.listenonly = 0, /* Indicates whether the only-listen mode is enabled */
.samples = 0,
.err report = 1,

}i
c. struct can_init_t flexcan3

struct can_init_t flexcan3 =
{
.canx = CAN3, /* Specify CAN port */
.bt = &flexcan3 bittiming,
.ctrlmode = &flexcan3 ctrlmode,
.reg ctrl default = 0,
.reg esr = 0
bi

d. Optional parameters

» CAN port

#define CAN3 ((struct can module *)CAN3 BASE)
#define CAN4 ((struct can module *)CAN4 BASE)

+ Baud rate

#define CAN 1000K 10
#define CAN_500K 20
#define CAN_ 250K 40
#define CAN_200K 50
#define CAN 125K 80
#define CAN 100K 100
#define CAN 50K 200
#define CAN_20K 500
#define CAN_10K 1000
#define CAN 5K 2000

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 161 /237

NXP Semiconductors

FlexCAN

11.2.2 Introducing the function of CAN example code

CAN example code supports the CANopen protocol. It mainly implements three parts of functions: network manage function
(NMT protocol), service data transmission function (SDO protocol), and process data transmission function (PDO protocol). NMT
protocol can manage and monitor slave nodes, include heart beat message. SDO protocol can transmit single or block data. The

PDO protocol can transmit process data that requires real time.

CAN example calls the CANopen interfaces, described in the table below:

Table 45. CAN Net APIs and their description

API name (type)

Description

UNSS8 canReceive_driver (CAN_HANDLE fd0, Message * m)

Socketcan receive CAN messages
+ fd0 — socketcan handle

* m - receive buffer

UNSS8 canSend_driver (CAN_HANDLE fd0, Message const
* m)

Socketcan send CAN messages
+ fdO — socketcan handle

» m - CAN message to be sent

void setNodeld(CO_Data* d, UNS8 nodeld)

Set this node id value.
* d - object dictionary

* nodeld - id value (up to 127)

UNSS setState(CO_Data* d, e_nodeState newState)

Set node state
* d - object dictionary
* newState — The state that needs to be set

Returns 0 if ok, > 0 on error

void canDispatch(CO_Data* d, Message *m)

CANopen handles data frames that CAN receive.
+ d - object dictionary

* m - Received CAN message

void timerForCan(void)

CANopen virtual clock counter.

UNS8 sendPDOrequest (CO_Data * d, UNS16 RPDOIndex)

Master node requests slave node to feedback specified data.
+ d - object dictionary

* RPDOIndex - index value of specified data

UNS8 readNetworkDictCallback (CO_Data* d, UNSS8
nodeld, UNS16 index, UNS8 sublndex, UNS8 dataType,
SDOCallback_t Callback, UNS8 useBlockMode)

The master node gets the specified data from the slave node.
+ d - object dictionary
* nodeld - the id value of slave node
+ index - the index value of the specified data

» sublndex — the subindex value of the specified data

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

162 /237

NXP Semiconductors

FlexCAN

Table 45. CAN Net APIs and their description (continued)

API name (type) Description

» dataType - the data type of the specified data
+ Callback — callback function

» useBlockMode — specifies whether it is a
block transmission

UNS8 writeNetworkDictCallBack (CO_Data* d, UNS8 nodeld, The master node sets the specified data to the slave node.
UNS16 index, UNS8 subIndex, UNS32 count, UNS8 dataType, | . { — object dictionary

void *data, SDOCallback_t Callback, UNS8 useBlockMode)
* nodeld - the id value of slave node

+ index - the index value of the specified data

» sublndex — the subindex value of the specified data
+ count - the length of the specified data

+ dataType - the data type of the specified data

+ Callback — callback function

+ useBlockMode - specifies whether it is a
block transmission

11.3 Running a CAN application
The following sections describe the hardware and software preparation steps for running a CAN application. The hardware
preparation is described separately for the LS1021A-loT and LS1028ARDB, but the sections Compiling the CANopen-app
binary for the master node, Running the CANopen application, and Running the Socketcan commands are applicable to both
LS1021A-loT and LS1028A platforms.
11.3.1 Hardware preparation for LS1021-loT
For LS1021-I0T, the list of hardware required for implementing the FlexCAN demo is as follows:

* LS1021A-loT boards

» Two CAN hardware interfaces (for example, CAN3 and CAN4 for LS1021A-loT)

» Two CAN transceivers (for example: TJIA1050)

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 163 /237

NXP Semiconductors

FlexCAN

+5V0
ECZ2 Pins (GFIO/FTM/CAN)
+2V5
J502
1 2
GPIO3_25 3 a
GPIO3_74 5 9% T GPIO3_19
71T°2%Ts GPIO3_20
GPIO3_18 g 10 GPIO3_21
GPIO3. 17 112912
GPIO3_ 76 13 2% 12 GPIO3_27
15 2916 GPIO3 16 75
GPIO3_22 Rx 17 gg 18 GPIOB_23 Ry
GPIO3_15
15 Tx 19 [5 5] 20
CON_2X10
Figure 44. Hardware diagram for the FlexCan demo
NOTE

— Line1 and line3 are 5.0 V.
— Line2 and line4 are GND.
— Line5is CAN3 Tx.
— Line6 is CAN3 Rx.
— Line7 is CAN4 Rx.
— Line8 is CAN4 Tx.

11.3.2 Hardware preparation for LS1028ARDB
For LS1028ARDB, below hardware is required:

* LS1028ARDB board

» Two cables to connect CAN1 and CAN.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

164 /237

NXP Semiconductors

FlexCAN

The hardware connection diagram is as shown in the following figure

R RESEY

Figure 45. Physical connection for CAN using LS1028ARDB

11.3.3 Compiling the CANopen-app binary for the master node

This section describes the procedure for compiling the CANopen-app binary for the master node, for both LS1021A and
LS1028A platforms.

CANopen application's name is CANopen-app. Perform the steps listed below to compile Canopen-app as linux command to the
target/usr/bin directory.

1. Configure cross-toolchain on user host environment.

2. Use the commands below:

git clone https://github.com/openil/openil.git
cd openil # checkout to OpenIL-201904

make nxp 1sl02laiot baremetal defconfig

or

make nxp 1s1028ardb-64b defconfig

make

O W #HF= »n n »n

3. The generated openil image file is in the output/images/ directory.
4. Download the sdcard.img image file to the SD card:

In U-Boot mode, first run the t ftp command for downloading sdcard. img to the buffer. Then, run the mmc command for
downloading the sdcard. img to SD card.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 165/237

NXP Semiconductors

FlexCAN

NOTE
Make sure to enable the below options before building the image:

$ make menuconfig

Target packages —--->
Libraries --->
Networking --->

[*] canfestival
driver (socket) —--->
(-—-SDO_MAX LENGTH_TRANS FER=512 -—-SDO_BLOCK_ST ZE=T75
--SDO MAX SIMULTANEOUS TRANSFERS=1) additional
configure options
[*] install examples
[*] libsocketcan
Networking applications --->
[*] can-utils
[*] iproute2

NOTE
» The following options are displayed only when the canfestival optionis setto Y.

» Linux uses the SocketCAN interface, so the driveroption selects the socket.
* The following additional configure options can be configured in the config.h file of CANopen:
Parameter description:
— --SDO_MAX_LENGTH_TRANSFER: Sets buffer size of SDO protocol.

— -- SDO_BLOCK_SIZE: Sets the maximum number of frames that can be sent by SDO block
transport protocol.

— --SDO_MAX_SIMULTANEOUS_TRANSFERS: Sets the number of SDO modules.

« Install binary application to openil filesystem, if theinstall examples optionis settoY.

11.3.4 Running the CANopen application

This section describes the procedure for running the CANopen-app application. Only the LS1021A platforms support
this application.

1. First, boot the LS1021A-loT board.

2. Waiting for the baremetal core to output below information:

Note: the CANopen protocol starts to run!
=>

3. Then, run the caNopen-app command in any directory in Linux prompt. While executing this command, first run the
test code.

4. After the test code is completed, user can implement the required instructions. The command caNopen-app execution
process steps are described below:

a. First, indicate whether the CAN interface has opened successfully. All commands are dynamically registered. Then,
indicate whether the command was registered successfully.

+ Command registration log
Command Registration Log:

[root@OpenIL:~]# CANopen-app
[80.899975] IPv6: ADDRCONF (NETDEV_ CHANGE): canO: link becomes ready

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 166 /237

NXP Semiconductors

FlexCAN

Note: open the CAN interface successfully!
"can quit" command: register OK!
"setState" command: register OK!

"showPdo" command: register OK!
"requestPdo" command: register OK!

"sdo" command: register OK!

"" command: register OK!

"test startM" command: register OK!
"test sdoSingle" command: register OK!
"test sdoSingleW" command: register OK!
"test sdoBlock" command: register OK!
"test showPdoCyc" command: register OK!
"test showpdoreq" command: register OK!
"test requestpdo" command: register OK!

b. There are nine test code in total, tests 1 to 9. Test code details are shown in the test log.

» Test code log “---test---” indicates that the test code begins.

* Firstly, the execution rights of the SDO and PDO protocol are explained.

* The tests 1~4 are SDO protocol test code. After starting the CANopen master node, it automatically enters into

initialization and pre-operation mode.
» The test5 is a test code that master node enters the operation mode and starts all slave nodes.

* The tests 6~9 are PDO protocol test code.

Test Code Log:

————————————————————————— test -----——————"—"—"""""""""-"-"----

Note: Test code start execute...
SDO protocol is wvalid in preoperation mode, but PDO protocol is invalid!
SDO and PDO protocol are both valid in operation mode!
Console is invalid when testing!

Note: testl--Read slave node single data by SDO.

Note: master node initialization is complete!

Note: master node entry into the preOperation mode!

Note: Alarm timer is running!

Note: slave node "0x02" entry into "Initialisation" state!

Note: test2--Write 0x2CD5 to slave node by SDO.

Note: Master write a data to 0x02 node successfully.

Note: test3--Read slave node single data by SDO again.

Note: reveived data is 0x2CD5

———————————————— text --——————-—"—"—"—""-"---

Note: reveived string ==>

CANopen is a CAN-based communication system.

It comprises higher-layer protocols and profile specifications.

CANopen has been developed as a standardized embedded network with highly flexible
configuration capabilities.

It was designed originally for motion-oriented machine control systems, such as
handling systems.

Today it is used in various application fields, such as medical equipment, off-road
vehicles, maritime electronics, railway applications, or building automation.

Note: test5--Master node entry operation mode, and start slave nodes!

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

167 /237

NXP Semiconductors

FlexCAN

master node entry into the operation mode,and start all slave nodes!

test6--Master
Rpdo4 data is

test8--Master
Rpdo4 data is

node show requested PDO data.

"require"

slave node "0x02" entry into "Operational" state!

test9--Master
Rpdo2 data is

node show received cycle PDO data.

cycle"

NOTE
tests 1 to 9 are not commands.

c. After the test code is executed, it automatically prints the list of commands. Num00~06 are normal commands. After
executing these instructions without parameters, the instruction usage is displayed. Num08~14 are test commands.
All test commands except num10 have no parameters. Argument of Num10 is a 16-bit integer.

» Now the user can execute any command in the command list.

Command List

Command List:

num | command | introduction

00 | etriauit | console thread exit!
01 | mele | command list
02 | can_guit | exit Caopen thread
03 | setState | set the CANopen node state
04 | chowpdo | show the data of REDO
05 | requestbdo | request the data of RPDO
06 1 sdo | read/urite one entry by SO protocol
0o
06 | teststartM | test — Start master
05 | test_sdoSingle | test —- Read slave node single data
10 | test_sdoSinglew | test — Write slave node single data
0| cocnoomiens | Gl e Gl cievo wedh Bloch aite
12 | testshowpdoCye | test —— Show cycle PO data
135 | test chowpdoreq | test — Show requested PDO data
14 | test_reuestpdo | test —— Request PDO data

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

168 /237

NXP Semiconductors

FlexCAN

Note: User can send command by console!
Note: Test code execution is complete!

Example: The following example shows the usage log after running the sdo command without any parameters.
SDO Command:
sdo
usage: sdo -type index subindex nodeid data
type = "r" (read), "w"(write), "b" (block)
index = 0~0xFFFF,unsigned short
subindex = 0~0xFF,unsigned char

nodeid = 1~127,unsigned char
data = 0 ~ OxXFFFFFFFF

11.3.5 Running the Socketcan commands

This section describes the steps for running Socketcan commands that can be performed on either of the boards (LS1021A-loT
or LS1021ARDB). These commands are executed on Linux. The standard Socketcan commands are the following:

1. Open the can0 port.
$ ip link set canO up
2. Close the can0 port.
$ ip link set canO down
3. Set the baud rate to 500K for the can0 port
$ ip link set canO type can bitrate 500000
4. Set can0 port to Loopback mode.
$ ip link set canO type can loopback on

5. Send a message through can0. 002 (HEX) is node id, and this value must be 3 characters. 2288pp (HEX) is a message,
and can take a value up to 8 bytes.

$ cansend can0 002#2288DD

6. Monitor can0 port and wait for receiving data.
$ candump can0

7. See can0 port details.

$ ip -details link show can0

NOTE
The third and fourth commands are valid when the state of can0 port is closed.

11.3.6 Testing CAN bus
Below is the sample code for testing the CAN bus on LS1028ARDB.

[root@OpenIL:~]# ip link set canO down
[root@OpenIL:~]# ip link set canl down

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 169 /237

NXP Semiconductors

FlexCAN

[root@OpenIL:~]# ip link set canO type can loopback off
[root@OpenIL:~]# ip link set canl type can loopback off
[root@OpenIL:~]# ip link set canO type can bitrate 500000
[root@OpenIL:~]# ip link set canl type can bitrate 500000
[root@OpenIL:~]# ip link set can0O up
[root@OpenIL:~]# ip link set canl up
[root@OpenIL:~]# candump can0 &
[root@OpenIL:~]# candump canl &
[root@OpenIL:~]# cansend can0 001#224466

can0O 001 [3]1 22 44 66
[root@OpenIL:~]# canl 001 [3]1 22 44 66
[root@OpenIL:~]# cansend canl 001#224466

can0 001 [3] 22 44 66

canl 001 [3] 22 44 66
[root@OpenIL:~]# cansend canl 001#113355

can0 001 [3] 11 33 55

canl 001 [3] 11 33 55
[root@OpenIL:~]# cansend can0 000#224466

can0 000 [3] 22 44 66

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 170/237

NXP Semiconductors

Chapter 12
NFC

NFC click board is a mikroBUS™ add-on board with a versatile near field communications controller from NXP — the PN7120
IC. NFC devices are used in contactless payment systems, electronic ticketing, smartcards, but also in retail and advertising —
inexpensive NFC tags can be embedded into packaging labels, flyers or posters.

This board is fully compliant with NFC Forum specifications. This implies that users can use the full potential of NFC and its three
distinct operating modes listed below:

1. Card emulation
2. Read/Write
3. P2P

12.1 Introduction

The NXP’s PN7120 IC integrates an ARM™ Cortex-M0 MCU, which enables easier integration into designs, because it
requires fewer resources from the host MCU. The integrated firmware provides all NFC protocols for performing the contactless
communication in charge of the modulation, data processing and error detection.

The board communicates with the target board MCU through the mikroBUS™ 12C interface, in compliance with NCI 1.0 host
protocols (NCI stands for NFC controller interface). RST and INT pins provide additional functionality. The board uses a 3.3V
power supply.

12.2 PN7120 features

PN7120 embeds a new generation RF contactless front-end supporting various transmission modes according to NFCIP-1 and
NFCIP-2, ISO/IEC14443, ISO/IEC 15693, ISO/IEC 18000-3, MIFARE and FeliCa specifications. It embeds an ARM Cortex-M0
microcontroller core loaded with the integrated firmware supporting the NCI 1.0 host communication.

12.3 Hardware preparation

Use the following hardware items for the NFC clickboard demo setup:
1. LS1028ARDB
2. NFC Click board
3. NFC Sample Card (tag)

NOTE
User need to insert the NFC click board into the LS1028ardb mikroBUS1 slot.

12.4 Software preparation
In order to support NFC click board, use the following steps:

1. In OpenlL environment, use the command make menuconfig to enable the below options:

Smake menuconfig

Target packages —--->
Hardware handling --->
NXP QorIQ libraries --->

[*] gorig-libnfc-nci

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 1711237

http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1
http://cache.nxp.com/documents/data_sheet/PN7120.pdf?pspll=1

NXP Semiconductors

NFC

2. In Linux kernel environment, make sure the below options are enabled:

Smake linux-menuconfig

[*] Networking support --->
<M> NFC subsystem support -—=>
Near Field Communication (NFC) devices --->

<M> NXP PN5XX based driver

NOTE
The NXP PN5XX based driver only supports the Module mode.

3. Use the make command to create the images.

12.5 Testing the NFC click board
Use the following steps for testing the NFC Clickboard:

1. Install NFC driver module
[root@OpenIL:~]# modprobe pn5xx i2c.ko

2. The following logs appear at the console after the above command is successful. The error information can be ignored in
this case.

[root@0penIl:~]# insmod /lib/modules/4.14.47-ipipe/kernel/[195.547601] random: crng init
done

[195.551016] random: 5 urandom warning(s) missed due to ratelimiting

[root@OpenIL:~]# insmod /lib/modules/4.14.47-ipipe/kernel/drivers/misc/nxp-pn5xx
/pn5xx_1i2c. ko

[777.503246]

[777

[777.508" ! 28: FIRM GPIO <OPTIONAL> error getting from OF node

[777. : 54 GPI0O <OPTIONAL> error getting from OF node

[777. 4 544 28 supply nxp,pn5 pvdd not found, using dummy regulator
[777. 4 ! 2 28 supply nxp,pn5 vbat not found, using dummy regulator
[8 supply nxp,pn54x-pmuvcc not found, using dummy regulato
r

[

.546723] 544 28 : supply nxp,pn54x-sevdd not found, using dummy regulator
3. Run the nfcDemoApp application
[root@OpenIL:~]# nfcDemoApp poll

[root@OpenIL:~1# nfcDemoApp poll
B L T i T T
NFC demo
B B B i
#i# Poll mode activated [1251.20807
1] pn54x_dev_open : 10,55

#H
[1251.212807]1 pn54x_dev_ioctl, cmd=1074063617, arg=1
] 1251.219006]1 pn544_enable power on
F R A A R R R R A R R S R S R R AR R R R R R R A R

. press enter to quit

disable power off
v_ioctl, cmd=10 63617, arg=1
pn544_enable power on

(:8103
8180
810103020304

1010143dab7663bdab766
180
(:810204
1818000
Waiting for a Tag/Device...

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 1721237

NXP Semiconductors
NFC

4. Put the NFC Sample Card (tag) on top of the NFC click board:

Waiting for a Tag/Device...
NFC Tag Found

Type : ‘Type A - Mifare U1’
NFCID1 : ‘04 67 66 D2 9C 39 81 °*

Record Found
NDEF Content Max size : '868 bytes'

NDEF Actual Content size : ‘29 bytes'
ReadOnly : 'FALSE"
Read NDEF URL Error

29 bytes of NDEF data received

D1 01 19 55 01 6E 78 70 2t 63 6F 6D 2F 64 65 6D 6F 62 6F 61 72 64 2F 4F 4

35 35 37 38

NFC Tag Lost

Waiting for a Tag/Device...

Printing the above information indicates successful card reading.

Open Industrial User Guide, Rev. 1.9, 09/2020
1737237

User's Guide

NXP Semiconductors

Chapter 13
BLE

This chapter introduces the features of the BLE P click board and how to use it on NXP's LS1028A reference design board (RDB)

13.1 Introduction

BLE P click carries the nRF8001 IC that allows user to add Bluetooth 4.0 to user's device. The click communicates with the target
board MCU through mikroBUS™ SPI (CS, SCK, MISO, MOSI), RDY and ACT lines, and runs on 3.3 V power supply.

BLE P click features a PCB trace antenna, designed for the 2400 MHz to 2483.5 MHz frequency band. The maximum device range
is up to 40 meters in open space.

13.2 Features
Following are the features provided by BLE P clickboard:
» nRF8001 Bluetooth low energy RF transceiver
— 16 MHz crystal oscillator
— Ultra-low peak current consumption <14 mA
— Low current for connection-oriented profiles, typically 2 yA
» PCB trace antenna (2400-2483.5 MHz, up to 40 meters)
* BLE Android app
* Interface: SPI (CS, SCK, MISO, MOSI), RDY and ACT lines
» 3.3V power supply

13.3 Hardware preparation

Use the following hardware items for the BLE P click board demo setup:
1. LS1028ARDB
2. BLE P Click board
3. Android phone (option)

The figure below depicts the hardware setup required for the demo:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 174 1 237

NXP Semiconductors

BLE

Figure 46. BLE P click board hardware setup

13.4 Software preparation

Use these steps for the BLE P click board demo software setup:

» Download the JUMA UART (Android app) by using the link: https://apkpure.com/juma-uart/com.juma.UART

* Then, run the steps below in order to support BLE P click board:

1. In OpenlL environment, use the command make menuconfig to enable the below options:

$make menuconfig
Target packages --->
Hardware handling --->
[*] i2c-tools
NXP QorIQ libraries --->
[*] gorig-libblep

2. In Linux kernel environment, make sure the below options are enabled:

Smake linux-menuconfig
Device Drivers --->
SPI support —--->

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

1757237

https://apkpure.com/juma-uart/com.juma.UART

NXP Semiconductors

BLE

<*> Freescale DSPI controller
<F> User mode SPI device driver support

3. Use the make command to create the images.

NOTE
The above operation can be replaced by executing the make nxp 1s51028ardbXXXX defconfig file.

13.5 Testing the BLE P click board
Use the following steps for testing the BLE P click board:
1. Running the blep_demo application.

The following log is displayed to indicate that the BLE P click board is initialized. At this time, user can scan for BLE P click
board from user's mobile phone or user's computer's Bluetooth device. The name of the BLE P click board used is “MikroE”

root@ penIL-Ubuntu:~# blep demo
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
Please input a command!

Event device started: Setup
Error:no

Start setup command

Setup complete

Event device started: Standby

Advertising started : Tap Connect on the nRF UART app
Error:no

Send broadcast command successfully

2. Connection log

Connect the BLE P click board via mobile app. On successful connection, the following log is displayed. Thereafter, the
application can communicate with the BLE P click board.

Evt Connectec

Evt Pipe Status
Evt link connection interval changed

Evt Pipe Status
Evt link connection interval changed

3. Disconnection log

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 176/ 237

NXP Semiconductors

BLE

Click the Disconnect button of the Android APP to disconnect from the BLE P click board. The following log displays that
the disconnection is successful:

Evt Disconnected

Advertising started : Tap Connect on the nRF UART app Send broadcast command successfully

4. Command line introduction
The blep _demo application supports four command lines: devaddr, name=, version, and echo.
a. devaddr
This command is used to obtain the MAC address of the BLE P click board. User can run this command at any time.
devaddr

Please input a command!
Device address

b. name=

This command is used to set the Bluetooth name of the ble p click board when broadcasting. No spaces are required
after the equal sign "=", and the content after the equal sign is the set name. The maximum length is 16 characters.

name=ble demo

Name set.

Please input a command!
Unknow event:0x00

Set local data successfully

c. version

This command is used to obtain the version of the BLE P click board. User can run this command at any time.

version
Please input a command!
Unknow event:Q0x00
Device version
“onfi ation IC
Ip version:?2
ent format:3
tup ID:
nfiguration

d. echo

This command is used to send a string to the Android app. This command should be executed after the connection
is established. The maximum length is 20 characters.

The below log displays the message displayed after user tries to send a string when no connection is established:
echo hi

Please input a command!
Unknow event:0x00

Ox00
Please connect the device before sending data

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 177 1 237

NXP Semiconductors

BLE

The below log is displayed when user sends a string after a connection is established:

echo hello,world!
Please input a command!

Unknow event:0x00

5. Receiving data

When the Android app sends a string:

DataReceivedEvent:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 178 /237

NXP Semiconductors

Chapter 14
BEE

This chapter introduces the features of the BEE Click Board and how to use it on LS1028ARDB.

14.1 Introduction

The BEE Click Board features the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver module from Microchip. The click is
designed to run on 3.3 V power supply only. It communicates with the target controller over an SPI interface.

14.2 Features
The features of the BEE Click Board are listed below:
* PCB antenna

MRF24J40MA module

* Low current consumption (Tx 23 mA, Rx 19 mA, Sleep 2 pA)
» ZigBee stack

« Miwi™ stack

» SPI Interface

» 3.3V power supply

14.3 Hardware preparation

Use the following hardware items for the BEE Click Board demo setup:
* Two LS1028ARDB Boards
» Two BEE Click Boards

The figure below describes the hardware setup for the BEE Click Board.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 179 /237

NXP Semiconductors

BEE

Bee click

Figure 47. BEE Click Board hardware setup

NOTE
The WA pin of BEE Click Board connects with the NC pin.

14.4 Software preparation
In order to support BEE click board, use the following steps:

1. In OpenlL environment, use the command make menuconfig to enable the below options:

Smake menuconfig
Target packages —--->
Hardware handling --->
[*] i2c-tools
NXP QorIQ libraries --->
[*] gorig-libbee

2. In Linux kernel environment, make sure the below options are enabled:

Smake linux-menuconfig
Device Drivers —--->
SPI support --->
<*> Freescale DSPI controller
<*> User mode SPI device driver support

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 180/237

NXP Semiconductors

-*- GPIO Support --->

[*] /sys/class/gpio/...

Memory mapped GPIO

(sysfs interface)

drivers --->

[*] MPC512x/MPC8xxx/QorIQ GPIO support

The above operation can be replaced by executing the command: make nxp 1s1028ardbXXXX defconfig.

NOTE

3. Use the make command to create the images.

14.5 Testing the BEE click board

The test application bee demo is created by using the BEE Click Board library. This application can transfer the file between two
BEE Click Boards.

1. User need to create a file in any path. For example, ./samples/test.txt.

2. First, start a server node by running the command below:

bee demo -s -f=XXX

The command parameters are as below:

» -s: This device node acts as a server.

BEE

» -f=XXX: This parameter is valid only on the server node. XXX is the file path (relative or absolute) to be transferred.

root@OpenIL-Ubuntu-LS1028ARDB:~# 1s
samples

root@OpenIL-Ubuntu-LS1028ARDB: ~# bee demo -s -f=./samples/test.txt

spili mode: 0x0

bits per word: 8
max speed: 500000 Hz (500 KHz)

BEE

Click Board Demo.

This node is a server node.

Waiting for a client
Reading the content of the file

3. Startaclient node on another LS1028ARDB by running the command bee demo -c. In the above command, the parameter
-c implies that this device node acts as a client. After receiving the file, the client node automatically exits. The received file
is saved in the current path.

root@OpenIL-Ubuntu-LS1028ARDB:~# 1s

samples

root@OpenIL-Ubuntu-LS1028ARDB:~# bee demo -c

spi mode:

bits per

0x0
word: 8

max speed: 500000 Hz (500 KHz)
BEE Click Board Demo.
This node is a client node.

Starting
Send the
Send the
Send the

to get a file

SEQ REQ command.
SEQ_START command.
SEQ_START command.

root@OpenIL-Ubuntu-LS1028ARDB:~# 1s

samples

test.txt

root@0OpenIL-Ubuntu-LS1028ARDB: ~#

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

181/237

NXP Semiconductors

BEE

4. The following log is displayed to indicate that the server node finished sending a file.

Send the SEQ INFO command.
Start to send the file
It's completed to send a file.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 182 /237

NXP Semiconductors

Chapter 15
4G-LTE Modem

15.1 Introduction

4G-LTE USB modem functionality is supported on NXP's LS1021-loT, LS1012ARDB, LS1043ARDB, LS1046ARDB, and

LS1028ARDB platforms.

15.2 Hardware preparation
A HuaWei E3372 USB Modem (as example) is used for the 4G-LTE network verification.
Insert this USB modem into USB slot of LS1012ARDB board (LS1012ARDB as example).

16.3 Software preparation
In order to support 4G-LTE modem, some options are needed.
1. In OpenlL environment, use command “make menuconfig” to enable the below options:
Smake menuconfig

System configuration --->
<*> /dev management (Dynamic using devtmpfs + eudev)

Target packages --->
Hardware handling --->

<*> usb modeswitch
<*> usb modeswitch data

2. In Linux kernel environment, make sure the below options are enabled:

Smake linux-menuconfig

Device Drivers --->
[*] Network device support --->
<*> USB Network Adapters --->

<*> Multi-purpose USB Networking Framework
<*> CDC Ethernet support

<*> CDC EEM support

<*> CDC NCM support

Finally, update the images, refer to Updating target images for LS1012ARDB.

15.4 Testing 4G USB modem link to the internet

Perform the following instructions to set up the 4G Modem .
After booting up the Linux kernel, an Ethernet interface will be identified, for example “eth2”.

1. Set eth2 connected to the network.
$ udhcpc -BFs -i eth2

2. Test the 4G modem link to the internet.
$ ping wWww.nxp.com

PING www.nxp.com (210.192.117.231): 56 data bytes
64 bytes from 210.192.117.231: seg=0 ttl=52 time=60.223 ms

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

183/237

NXP Semiconductors

64 bytes
64 bytes
64 bytes
64 bytes

from
from
from
from

210.
210.
210.
210.

192.
192.
192.
192.

117
117
117
117

.231: seg=1 ttl=52 time=95.076 ms
.231: seg=2 ttl=52 time=89.827 ms
.231: seg=3 ttl=52 time=84.694 ms
.231: seg=4 ttl=52 time=68.566 ms

Open Industrial User Guide, Rev. 1.9, 09/2020

4G-LTE Modem

User's Guide

184 /237

NXP Semiconductors

Chapter 16
OP-TEE

OP-TEE is for Open Portable Trusted Execution Environment (OP-TEE) on ARM ®, some NXP platforms support this secure
features, for example LS1021A-TSN and LS1021A-loT platforms.

16.1 Introduction

This section describes the operating environment, tools and, dependencies necessary for deploying OP-TEE. It describes the
installation based on the design and setup of one specific environment. Thereafter, users need to adapt the setup and deployment
for their specific environment and requirements.

It includes the following:

Getting OP-TEE and relevant test program
Compiling the image
Prerequisites of integrating TEE binary image into the final images.

Installation and usage steps for the TEE application and output obtained on the LS1021A platform.

The TEE used for this demo is Open Portable Trusted Execution Environment (OP-TEE).

This release supports the following features:

Supports the LS1021A-TSN and LS1021A-IOT platforms

Secure boot by SD boot

TrustZone Controller enabled

U-boot: v2016.09.

Linux Kernel v4.1 with OP-TEE drivers backported from mainline kernel v4.11
OP-TEE 0OS: v2.4.0

OP-TEE Client: v2.4.0

OP-TEE Test: v2.4.0.

NOTE
For LS1021AIOT, the nxp 1s102laiot optee defconfig configuration file does not support secure
boot, it just includes OP-TEE.

16.2 Deployment architecture

The following figure shows the deployment architecture of OP-TEE on ARM TrustZone enabled SoCs.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

185/237

NXP Semiconductors

OP-TEE

Rich OS
4 [=N R
Native Applications] OP-TEE “
= I I
DRM Payment Corporate
ptee_client Trusted |![Trusted [!| Trusted %
Pl (it Ll L M T B L L LI T, B o, Application |l |Application |l |Application -]
TEE GlobalPlatform | |: | I : g
Supplicant | | TEEClient API | |:....... T —— LIRS RS
5/ " a N [
wentprmeeaadbanssnnnsansennanes {RFTCTTE TS W N A GlobalPlatform | [%
' : \ TEE Internal API) E
S : e — a
EBB : TEEDriver | ot TEess] [(erypto..) J | i
- : & Monitor : 5
> Ej‘ﬁb’t‘éé‘_’ii‘ﬁﬁi&ii\?e‘., [HAL) [E
i Scrata... B e .
HW resources

crypto, timers, watchdog, fuses...

ARM® TrustZone®enabled
chipset

Figure 48. Architecture of OP-TEE on an ARM TrustZone enabled SoC

16.3 DDR memory map
The following figure shows the DDR memory map for LS1021A-TSN platform with OP-TEE implementation.

/-—"‘
____________ BFDO0000
. 7 .
1
! OP-TEE :
' Trusted OS R BC100000
st e o ey o 1 (| [T o T ———
______ BC000000
T L
1 .
: Linux
— — — _ _ _ 8000000
Figure 49. DDR memory map

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 186 /237

NXP Semiconductors

OP-TEE

16.4 Configuring OP-TEE on LS1021A-TSN platform
Use the following commands to build the images with the OP-TEE feature on the LS1021A-TSN platform.
cd openil

make clean

$
$
$ make nxp 1sl02latsn optee-sb defconfig
$

make

#or make with a log
$ make 2>&1 | tee build.log

NOTE
The host Linux machine must have the following libraries:

* libmagickwand-dev for APT on Debian/Ubuntu.

* ImageMagick-devel for Yum on CentOS.

The nxp 1s102latsn optee-sb_defconfig configuration file includes some default configurations for secure boot and
OP-TEE. These are listed below:

1. 1s102latsn sdcard SECURE BOOT TEE U-Boot configuration.
2. kernel CONFIG OPTEE configuration.
3. OP-TEE OS, client, and test applications.
4. csT tool to create secure boot keys and headers.
The CST tool can support two special functions, which are:

1. Using custom srk.pri and srk.pub files to maintain the consistent keys. For this feature, move the custom srk.pri and srk.pub
files into the directory named board/nxp/1s102latsn/. Then, the CST tool creates all the keys and header files for
secure boot based on the two files, each time. In addition, after running gen_keys 1024 to get the srk.pri and srk.pub
files atthefirstinstance, if there are no customfilesin board/nxp/1s1021atsn/, the CST tool always uses the existing
srk.pri and srk.pub, until the two files are deleted.

2. Enabling/disabling the core hold-off switch for the secure boot, by using the make menuconfig command.
This can be done by using the following command:
Host utilities --->
[*]host cst tool

*** core hold-off ***

[*] secure boot core hold-off

After the correct building, the final SD card image named sdcard. img can be located at output/images. The keys for
secure boot that should be programmed into the silicon can be located in the file output/images/srk. txt.

16.5 Running OP-TEE on LS1021A-TSN platform

This section provides the commands for running OP-TEE on the LS1021A-TSN platform. It includes commands for secure boot,
executing OP-TEE daemon, and executing OP-TEE test cases.

16.5.1 Running secure boot

OP-TEE must run together with secure boot in order to protect all images to avoid being attacked. For details about
secure boot, refer to the section, Secure Bootin the Chapter, Boot Loaders in the online LSDK document: https://
freescalereach01.sdIproducts.com/LiveContent/web/pub.xqgl?c=t&action=home&pub=QorlQ_SDK&lang=en-US

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 187 /237

https://freescalereach01.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US
https://freescalereach01.sdlproducts.com/LiveContent/web/pub.xql?c=t&action=home&pub=QorIQ_SDK&lang=en-US

NXP Semiconductors

Refer to the following useful CCS commands for secure boot:

#Connect to CCS and configure Config Chain
delete all
config cc cwtap:<ip address of cwtap> show cc

©eS 8 8
ccs::config chain {1s1020a dap sap2} display ccs::get config chain

config server 0 10000

#Check Initial SNVS State and Value in SCRATCH Registers

CCs::

Cccs::

display mem <dap chain pos> 0x1e90014 4 0 4
display mem <dap chain pos> 0x1ee0200 4 0 4

#Write the SRK Hash Value in Mirror Registers

CCs:
CCs:
CCs:
ccs:
CcCs:
CCs:
CCs:
CCs:

#Get
CESE

If the image verification passes, the board boot up starts in the secure mode.

:write mem <dap chain pos> 0x1e80254 4 0 <SRKH1>

:write mem <dap chain pos> 0x1e80258 4 0 <SRKH2>
:write mem <dap chain pos> 0x1e8025c 4 0 <SRKH3>
:write mem <dap chain pos> 0x1e80260 4 0 <SRKH4>
:write mem <dap chain pos> 0x1e80264 4 0 <SRKH5>
:write mem <dap chain pos> 0x1e80268 4 0 <SRKH6>
:write mem <dap chain pos> 0x1e8026c 4 0 <SRKH7>
:write mem vdap chain pos> 0x1e80270 4 0 <SRKH8>

the Core Out of Boot Hold-Off

:write mem <dap chain pos> 0Oxlee(00ed4 4 0 0x00000001

16.5.2 Executing Op-tee Daemon

Run OPTee client daemon using the command below:

tee-supplicant /dev/teepriv0 &

16.5.3 Executing OP-Tee test cases

OP-Tee test cases can be run using the steps listed below.

1.

Run xtest binary in Linux console:

xtest

2. Then user should get a log similar to the following as a test result:

Run test suite with level=0

TEE test application started with device [(null)]

FHE A AR R R
#

regression

#

FHEHH R AR A AR R

24003 subtests of which 0 failed
76 test cases of which 0 failed
0 test case was skipped

TEE test application done!

Open Industrial User Guide, Rev. 1.9, 09/2020

OP-TEE

User's Guide

188 /237

NXP Semiconductors

Chapter 17
SELinux

SELinux is a security enhancement to Linux that allows users and administrators better access control.

We have enabled SELinux in OpenlL with Ubuntu root file system.

17.1 Running SELinux demo

This section describes the procedure for running the SELinux demo on NXP's LS1043ARDB-64bit and

LS1046ARDB-64bit platforms.

17.1.1 Obtaining the image for SELinux

The SELinux can run on the NXP platforms:- LS1028ARDB, LS1043ARDB-64bit, and LS1046ARDB-64bit with Ubuntu

file system.

Use the below commands for building these two platforms for the SELinux demo:

$
$

» H* 0 H W0

HH= U

cd openil
make clean

make nxp 1sl043ardb-64b ubuntu defconfig # for 1sl043ardb-64b platform
or
make nxp_lsl046ardb-64b ubuntu defconfig # for 1sl046ardb-64b platform
or
make nxp_lsl028ardb-64b_ubuntu_defconfig # for 1s1028ardb-64b platform

make
or make with a log
make 2>&1 | tee build.log

17.1.2 Installing basic packages

Install the following basic packages before running the SELIlinux demo:

1. Basic packages:
+ $ apt-get update
+ $ apt-get install dpkg
+ $ apt-get install vim
* $ apt-get install wget
+ $ apt-get install bzip2
+ $ apt-get install patch
+ $ apt-get install bison
+ $ apt-get install flex
+ $ apt-get install xz-utils
« $ apt-get install auditd
+ $ apt-get install ssh
+ $ apt-get install apache2

» apt-get install policycoreutils

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

189 /237

NXP Semiconductors

+ $ apt-get install selinux-utils

« $ apt-get install selinux-basics

SELinux

2. Reboot the board to u-boot prompt, add parameters "security=selinux selinux=1 enforcing=0" to bootargs (Is1028ardb

3.

as example)

=> setenv bootcmd 'setenv bootargs root=/dev/mmcblk0p2 rootwait rw earlycon=uart8250,0x21c0500

console=ttyS0,115200 cma=256M video=1920x1080-32@60 security=selinux selinux=1
enforcing=0;mmcinfo;fatload mmc 0:1 ${dp load} ${dp file}; hdp load ${dp load} $

{dp_offset};fatload mmc 0:1 ${loadaddr} S${bootfile};fatload mmc 0:1 ${fdtaddr} S${fdtfile};booti

${loadaddr} - S${fdtaddr}'
=> saveenv

run boot command to boot the board

=> boot

Note: During booting, SELinux will do relabel entire file system as below shows, and then reboot the board automatically.

*** Warning -- SELinux default policy relabel is required.

*** Relabeling could take a very long time, depending on file

*** gystem size and speed of hard drives.

[16.531853] 001: cdns-mhdp-imx £200000.display: IRQ plug in not found
[16.531865] 001: cdns-mhdp-imx £200000.display: IRQ plug out not found
[OK] Reached target Sound Card.

Warning: Skipping the following R/0O filesystems:

/sys/fs/cgroup

Relabeling / /dev /dev/hugepages /dev/mqueue /dev/pts /dev/shm /run /run/lock /sys /sys/fs/
cgroup/blkio /sys/fs/cgroup/cpu,cpuacct /sys/fs/cgroup/cpuset /
sys/fs/cgroup/devices /sys/fs/cgroup/freezer /sys/fs/cgroup/hugetlb /sys/fs/cgroup/
memory /sys/fs/cgroup/perf event /sys/fs/cgroup/pids /sys/fs/cgroup/sys
temd /sys/fs/cgroup/unified /sys/fs/pstore /sys/kernel/debug

/ 100.0%

/dev 100.0%

/dev/hugepages 100.0%

Warning no default label for /dev/mqueue

/dev/mqueue 100.0%

/dev/pts 100.0%

/dev/shm 100.0%

/run 100.0%

/run/lock 100.0%

/sys 100.0%

Warning no default label for /sys/fs/cgroup/blkio

/sys/fs/cgroup/blkio 100.0%

Warning no default label for /sys/fs/cgroup/cpu,cpuacct
/sys/fs/cgroup/cpu, cpuacct 100.0%

Warning no default label for /sys/fs/cgroup/cpuset

/sys/fs/cgroup/cpuset 100.0%

Warning no default label for /sys/fs/cgroup/devices
/sys/fs/cgroup/devices 100.0%

Warning no default label for /sys/fs/cgroup/freezer
/sys/fs/cgroup/freezer 100.0%

Warning no default label for /sys/fs/cgroup/hugetlb
/sys/fs/cgroup/hugetlb 100.0%

Warning no default label for /sys/fs/cgroup/memory
/sys/fs/cgroup/memory 100.0%

Warning no default label for /sys/fs/cgroup/perf event
/sys/fs/cgroup/perf event 100.0%

Warning no default label for /sys/fs/cgroup/pids

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

190/237

NXP Semiconductors

/sys/fs/cgroup/pids 100.0%

Warning no default label for /sys/fs/cgroup/systemd

/sys/fs/cgroup/systemd 100.0%

Warning no default label for /sys/fs/cgroup/unified

/sys/fs/cgroup/unified 100.0%

/sys/fs/pstore 100.0%
/sys/kernel/debug 100.0%

Cleaning up labels on /tmp

4. After booting the board, check the file system labels with following command in Linux prompt:

$ 1s -z /

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:device t:s0

system u:object r:unlabeled t:s0

system u:object r:home root t:s0

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:unlabeled t:s0

system u:object r:proc t:s0

system u:object r:unlabeled t:s0

system u:object r:var run t:s0

system u:object r:unlabeled t:s0

system u:object r:var t:s0

system u:object r:sysfs t:s0

system u:object r:tmp t:s0

system u:object r:unlabeled t:s0

system u:object r:var t:s0

bin
boot
data
dev
etc
home
1lib
lost+found
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr

var

SELinux

If above information "unlabeled_t" is oberserved which means the file system is not labeled correctly, another command is needed

to label them:

$ touch /.autorelabel
$ reboot

Then, SELinux will relabel all file system.

17.1.3 Basic setup

Perform the following basic steps before running the SELIlinux demo.

1. Make sure SELinux is enabled

$ sestatus

SELinux status:
SELinuxfs mount:
SELinux root directory:
Loaded policy name:
Current mode:

Mode from config file:
Policy MLS status:

Policy deny unknown status:

Open Industrial User Guide, Rev. 1.9, 09/2020

enabled
/sys/fs/selinux
/etc/selinux
default
permissive
permissive
enabled

allowed

User's Guide

191/237

NXP Semiconductors

SELinux
Memory protection checking: actual (secure)
Max kernel policy version: 31
$ id -z

system u:system r:kernel t:s0
or
unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

$ semanage login -1

Login Name SELinux User MLS/MCS Range Service
__default unconfined u s0-s0:c0.c1023 *
root unconfined u s0-s0:c0.c1023 *

2. Map root to sysadm_u, modify the mapping of root and selinux user:
$ semanage login -m -s sysadm u root
Logout and login again. Check root’s SELinux login user:

$ id -z
sysadm u:sysadm r:sysadm t:s0-s0:c0.c1023

3. Map linux user to a selinux user named user_u:
$ semanage login -m -s user u -r s0 default
Check all the selinux users logged in:

$ semanage login -1

Login Name SELinux User MLS/MCS Range Service
__default user u s0 *
root sysadm u s0-s0:c0.c1023 *

4. Label the system. Modify the SELinux config file with sELINUXTYPE=default using the command below:

$ vim /etc/selinux/config

Restore the type of files in /root:

$ mkdir /root home
$ semanage fcontext -a -t home root t '/root home(/.*)?'
$ restorecon -Rv /root_home/

5. Check ssh server:

$ systemctl status ssh

ssh.service - OpenBSD Secure Shell server

Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled) Active: active
(running) since 2017-05-09 07:23:56 CST; 1 weeks 6 days ago

Main PID: 908 (sshd)

CGroup: /system.slice/ssh.service

L2908 /usr/sbin/sshd -D

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 192 /237

NXP Semiconductors

If checking the ssh server status fails, restart the ssh server using the command below:
$ systemctl restart ssh
6. Check the http server:

$ systemctl status apache2
L_apache2.service - LSB: Apache2 web server

Loaded: loaded (/etc/init.d/apache2; bad; vendor preset: enabled) Drop-In: /lib/systemd/

system/apache2.service.d
L—apache2—systemd.conf

SELinux

Active: active (running) since Thu 2016-02-11 16:30:39 UTC; 2min 3s ago Docs: man:systemd-sysv-

generator (8)

Process: 3975 ExecStart=/etc/init.d/apache2 start (code=exited, status=0/SUCCE CGroup: /

system.slice/apache2.service

}-3990 /usr/sbin/apache2 -k start
F—3993 /usr/sbin/apache2 -k start
L 3994 /usr/sbin/apache2 -k start

If checking the apache?2 status fails, restart apache2 service:

$ systemctl restart apache2

7. Add the user test1: Add a linux user named test1. Specify password for test1 and other configurations can be defaultMap

root to sysadm_u.

$ adduser testl
Adding user “testl'
Adding new group “testl' (1001)

Adding new user ‘testl' (1001) with group "testl' ... Creating home directory " /home/testl'

Copying files from "/etc/skel' ... Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully Changing the user information for testl
Enter the new value, or press ENTER for the default Full Name []:

Room Number []: Work Phone []: Home Phone []: Other []:

Is the information correct? [Y/n] y

17.1.4 Demo 1: local access control

This demo shows how SELinux protects a local file. The process cannot access local files if it is unauthorized.

Example 1: Denying a process from reading a wrong file type

In this example, a vi process created by user with uid: test1, acts as a subject to access a common file, which has a DAC

permission of 777.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

193/237

NXP Semiconductors

SELinux

/file

lusr/bin/vi home root t

“-TWXTWXITWX

no rules

uid:testl

V1 process

user t

user t

allow user thome root t:file { read write open }

Figure 50. Allowing local file access control

1. root: create a test file:
$ echo "file created in root home" > /root home/file
$ chmod 777 /root home/file
$ mv /root home/file /file
$ 1s -z /file
sysadm u:object r:home root t:s0 /file
2. root: enable SELinux:
$ setenforce 1

$ getenforce
Enforcing

3. User test1: logs in (can use "ssh" command from another machin to login) and visits the file. User test1 logs in the
system via ssh and checks id info:

S id -Z

user u:user r:user t:s0
User test1 visits the file using the vi command.
$ vi /file

SELinux denies access to the file, even though the file is 777.

"/file" [Perm

Figure 51. The VI command log

Because there is no allowed rule such as the following

allow user t home root t: file {write append}

4. root: change the type/user of file

$ setenforce 0

$ chcon -t user t /file
$ chcon -u user u /file
$ 1s -z /file

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 194 /237

NXP Semiconductors

user_u:ob
$ setenfo

ject r:user t:s0 /file
rce 1

SELinux

5. User test1: visits the file of correct type, and his request is approved. The user test1 visits the file again and succeeds.

$ vi /fil

@

6. root: Refer to the audit log: /var/log/audit/audit.log with commands audit2why and audit2allow.

$ audit2why -a

There is an AVC information about access denied and a reasonable root cause as shown in the below figure.

Figure 52.

type=AVC msg=audit(145 344.¢ 204): avc: denied { write } for
omm="v1" name="file" dev= <Bp3" 1no=146470 scontext=user_u:
dm u:object r:home root t:s@ tclass=file permis

ng type enforcement (TE) allow rule.

_ You can use auditzallow to generate a loadable module to allow
this acces

Audit log for vi

$ audit2a

llow -a

This command suggests the rules that can approve the access.

Figure 53.

The source type 'user_t' can write to a 'file' of the following types:
wireshark_home_t, telep: logger_data_home_t, screen_home_t, screen run
_t, xdm_tmp_ _t, p13uer tmpf , gconf_tmp_t, rssh_rw_t, httpd_user acrlpt exec_
t me_t, tvtime_tmp_t, httpd user_conten
ion contro1 data home_t, pulseaudic_tmp_t, spa
_content _t, “pulseaudio home_t te1epathy_tmp_content,
_tmpfs_t r_home_t, gift_home_t,
xauth_home_t, uml_tmpfs_t, home t, pyzor_tmp_t,
_t, httpd_Uaer_rw_content_t hadoop_| home_ _t, Lookeeper tmp_t, S
s t, games_tmpfs_t, uml_ro_t, mail_home rw_t, vmware conf t, gpg_ agent tm
amd_home_t, krbs home_t, gnome_home_t, te1epathy_nunahlne_home_t telepa
ogger cache_home_t, uml_tmp t, vmware_file t, irc_tmp t, pulseaudio_tmpfsf
. user_home_t, gnome_#eyrin home_t, evolution_exchange_tmpfs_t, iceauth_hom

elper_tmp_t, pulseaudio_tmpf: 1res a1 L _home_t, th

underbird home t, evolution_tmpfs_t, are tmpf. _t, mozilla_tmpfs_t, telepathy

| mission_control _home_t, irc_log_home_t, gift_ tmpfs_t, screen_tmp_t, vmware_tmp

ail_home_t, moz 1a _tmp_t, mp]ayer_home_t pu audio_home_t, httpd_user_h
uabfa_ 1la_plugin_home_t, telepathy_gabble_cache_home_t,

_tmp_t, evolution_webcal_tmpfs_t, user_mail_tmp_t, spam in_home_t, evoluti

on_alarm_tmpfs_t, hadoop_tmp_t, security t, mysgld_home_t, oidentd_home_t, tele

pathy cache_home t, uml_rw_t, user_ fonts_config_t, bluetooth_helper tmpfs_t, mo

z1lla p1ug1n tmpTs_t, games tmp t, user_tmp_t, mozilla_home_t, nfsd_rw_t, uml_e

_tmp_t, mpd user_data_t, telepathy data_home_t, tvtime_tmpfs_t, http

5 content_t, pyzor_home_t, user_tmpfs_t, user fonta cache_t, gpg_secret

| t, anon_inodefs_t, gconf_home t, xserver_ tmpfs_t, session_dbusd | home t

allow user_t home_root_t:file { read write open };

Audit suggestion for Vi

Example 2: Denying a root user from changing SELinux running mode

In this example, the root user is restricted to have no permission to change the SELinux running mode when SELinux is enforced.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

195/237

NXP Semiconductors

SELinux

selinux

running

mode

secure_mode_policyload

uid:root

sysadm t

Figure 54. Restricting root permissions

1. Root: Turn on and then turn off Selinux.

Booleans are shortcuts for the user to modify the SELinux policy dynamically. The policy, secure mode policyloadisone
of these policies, which can deny a root user from changing SELinux running mode. By default, it is Off.

$ getsebool secure mode policyload
secure mode policyload --> off

Root can turn on SELinux:
$ setenforce 1

Root can then turn off SELinux:
$ setenforce 0

2. root: enable secure_mode policyload

Now the SELinux is permissive. Run the setsebool command to enable secure mode policyload:
$ setsebool secure mode policyload on

Check the status of secure mode policyload again:

$ getsebool secure mode policyload
secure mode policyload --> on

3. Root: Try to turn on and turn off SELinux.
Root can still turn on SELinux:
$ setenforce 1
Root tries to turn off SELinux but gets permission denied:

S setenforce 0
setenforce: setenforce () failed

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 196 / 237

NXP Semiconductors

SELinux

If root user want to disable Enforcing, should do following:

S setsebool secure mode policyload off
$ setenforce 0

$ getenforce

Permissive

17.1.5 Demo 2: enabling remote access control

This demo shows how SELinux can also be used to provide website visiting permissions. A web client cannot access website files
remotely if it is not authorized.

Example 1: Denying an HTTP client from visiting a private website
Use the following commands for running this sample demo:

1. root: Copy index.html to /root

$ cp /var/www/html/index.html /root
2. root: Move index.html to apache2

$ mv /root/index.html /var/www/html/index.html
3. root: turn on SELinux and wget website

S setenforce 1

$ wget localhost
--2020-05-28 21:01:33-- http://localhost/

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost)|::1]:80... failed: Connection refused.
Connecting to localhost (localhost) [127.0.0.1]:80... connected.

HTTP request sent, awaiting response... 403 Forbidden

2020-05-28 21:01:33 ERROR 403: Forbidden.

Note: Make sure localhost is ready
$ cat /etc/hosts
127.0.0.1 localhost

Now wget, as a http client, fails to visit apache2 home page.

4. root: check type of index.html.

$ 1s -z /var/www/html/index.html
sysadm u:object r:user home t:SystemLow /var/www/html/index.html

The index.html has a type of home_root_t which cannot be access by the http client with type httpd_t.

5. root: restore index.html to a right type.
$ setenforce 0
$ restorecon /var/www/html/index.html

$ 1s -Z /var/www/html/index.html
sysadm u:object r:httpd sys content t:SystemLow /var/www/html/index.html

The index.html now contains the httpd_sys_content_t and can be access by httpd_t.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 197 /237

NXP Semiconductors

SELinux

6. root: turn on SELinux and visit again.

$ setenforce 1
$ wget localhost
--2020-05-28 21:03:39-- http://localhost/

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost) |::1]:80... failed: Connection refused.
Connecting to localhost (localhost)[127.0.0.1]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 10918 (11K) [text/html]

Saving to: 'index.html'

index.html 100% [>] 10.66K --.-KB/s in Os
2020-05-28 21:03:39 (109 MB/s) - 'index.html' saved [10918/10918]

Example 2 Denying ssh client from remote login with root

The following figure shows how to deny ssh remote login permission for a root user.

r N

ssh_sysadm_login

Figure 55. ssh remote permission

1. root: config sshd to permitrootlogin

$ setenforce 0
$ vi /etc/ssh/sshd config

Find “PermitRootLogin prohibit-password” and change it to “PermitRootLogin yes”

2. root: restart ssh server
$ systemctl restart ssh

Now root should be allowed to access the system from remote side with ssh.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 198 /237

NXP Semiconductors

SELinux
3. root: turn on SELinux and ssh.

$ setenforce 1

$ ssh root@localhost

/bin/bash: Permission denied
Connection to localhost closed.

Even though sshd_config file has permitted root login but still fails in ssh.

4. root: turn on ssh login boolean
Check that the following settings are configured:
$ getsebool -a | grep ssh
allow ssh keysign --> off
fenced can_ssh --> off
sftpd write ssh home --> off

ssh_sysadm_login --> off
ssh use gpg agent --> off

There is a boolean named ssh_sysadm_login. This denies a root user from ssh login. Turn on it.

$ setenforce 0
$ setsebool ssh sysadm login on

5. root: enforcing and ssh again.

$ setenforce 1
$ ssh root@localhost

Now root user can ssh successfully.

6. root: refer to the audit log.

$ audit2why -a

1455211133.736:523): avc: denied { transition } for pid=4
bin ="mmcblkop ¢ yste 5
tcontext=sysadm_u:sys

as caused by

The boolean sadm_login was set incorrectly.
Description:
Allow ssh to s

Allow access
setsebool -

Figure 56. Audit log for sshd

$ audit2allow -a

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 199 /237

NXP Semiconductors

Chapter 18
NETCONF/YANG

This chapter provides an overview of the NETCONF protocol and Yang (a data modelling language for NETCONF). It describes
the applications, installation and configuration steps, operation examples, Web Ul demo, and troubleshooting aspects of
NETCONF. It also describes how to enable the NETCONF feature in OpenlL.

18.1 Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and modification. It uses a
remote procedure call (RPC) paradigm and a system of exposing device (server) capabilities, which enables a client to adjust
to the specific features of any network equipment. NETCONF further distinguishes between state data (which is read-only) and
configuration data (which can be modified). Any NETCONF communication happens on four layers as shown in the table below.
XML is used as the encoding format.

Table 46. The NETCONF layers

Layer Purpose Example

1 Content Configuration data, Notification data
2 Operations <edit-config>

3 Messages <rpc>, <rpc-reply>, <notification>

4 Secure Transport SSH, TLS

YANG is a standards-based, extensible, hierarchical data modeling language that is used to model the configuration and state
data used by NETCONF operations, remote procedure calls (RPCs), and server event notifications. The device configuration
data are stored in the form of an XML document. The specific nodes in the document as well as the allowed values are defined
by a model, which is usually in YANG format or possibly transformed into YIN format with XML-based syntax. There are many
such models created directly by IETF to further support standardization and unification of the NETCONF interface of the common
network devices. For example, the general system settings of a standard computer are described in the IETF-system model
(rfc7317) or the configuration of its network interfaces defined by the IETF-interfaces model (rfc7223). However, it is common for
every system to have some specific parts exclusive to it. In that case there are mechanisms defined to enable extensions while
keeping the support for the standardized core. Also, as this whole mechanism is designed in a liberal fashion, the configuration
does not have to concern strictly network. Even RPCs additional to those defined by NETCONF can be characterized, thus
allowing the client to request an explicit action from the server.

A YANG module defines a data model through its data, and the hierarchical organization of and constraints on that data. A module
can be a complete, standalone entity, or it can reference definitions in other modules and sub-modules as well as augment other
data models with additional nodes. The module dictates how the data is represented in XML.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines relationships between and
constraints on the data. This enables user to create syntactically correct configuration data that meets constraint requirements
and enables user to validate the data against the model before uploading it and committing it on a device.

For information about NETCONF, see RFC 6241, NETCONF Configuration Protocol.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF), and related RFCs.

18.2 Netopeer2

18.2.1 Overview

Netopeer2 is a set of tools implementing network configuration tools based on the NETCONF Protocol. This is the second
generation of the toolset, originally available as the Netopeer project. It is based on the new generation of the NETCONF and

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 200/ 237

https://tools.ietf.org/html/rfc7317
https://tools.ietf.org/html/rfc7223
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6020
https://github.com/CESNET/Netopeer2/tree/v0.7-r2

NXP Semiconductors

NETCONF/YANG

YANG libraries - libyang and libnetconf2. The Netopeer2 server uses sysrepo as a NETCONF datastore implementation. In
OpenlL, version v0.7-r2 was used. It allows developers to control their devices via NETCONF and operators to connect to their
NETCONF-enabled devices.

Figure 57. High level architecture of Netopeer and sysrepo

NETCONF NETCONF NETOPEER2 Sysrepo

S g NETCONF Server Application

Client Engine

SYSREPO SYSREPO

Client Library Client Library

Netopeer?2 sysrepo

18.2.2 Sysrepo
Sysrepo is an YANG-based configuration and operational state data store for Unix/Linux applications.

Applications can use sysrepo to store their configuration modeled by provided YANG model instead of using e.g. flat configuration
files. In OpenlL, version v0.7.8 was used. Sysrepo will ensure data consistency of the data stored in the datastore and enforce
data constraints defined by YANG model. Applications can currently use C language API of sysrepo Client Library to access the
configuration in the datastore, but the support for other programming languages is planed for later too (since sysrepo uses Google
Protocol Buffers as the interface between the datastore and client library, writing of a native client library for any programing
language that supports GPB is possible).

For information about sysrepo, see:

http://www.sysrepo.org/static/doc/html/index.html

18.2.3 Netopeer2 server

Netopeer2 software is a collection of utilities and tools to support the main application, Netopeer2 server, which is a NETCONF
server implementation. It uses libnetconf2 for all NETCONF communication. Conforming to the relevant RFCs2 and still being part
of the aforementioned library, it supports the mandatory SSH as the transport protocol but also TLS. Once a client successfully
connects using either of these transport protocols and establishes a NETCONF session, it can send NETCONF RPCs and the
Netopeer2 server responds with correct replies.

The following set of tools are a part of the Netopeer server:
» Netopeer2-keystored as a tool for the storage and process of keys.

* Netopeer2-server as the main service daemon integrating the SSH/TLS server.

18.2.4 Netopeer2 client

Netopeer2-cli is a CLI interface that allows user to connect to a NETCONF-enabled device and obtain and manipulate its
configuration data.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 201/237

https://github.com/sysrepo/sysrepo/tree/v0.7.8
http://tools.ietf.org/html/rfc6020
https://github.com/sysrepo/sysrepo/blob/v0.7.8/inc/sysrepo.h
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.sysrepo.org/static/doc/html/index.html

NXP Semiconductors

NETCONF/YANG

This application is a part of the Netopeer2 software bundle, but compiled and installed separately. It is a NETCONF client with a
command line interface developed and primarily used for Netopeer2 server testing, but allowing all the standards and even some
optional features of a full-fledged NETCONF client.

Netopeer2-cli serves as a generic NETCONF client providing a simple interactive command line interface. It allows user
to establish a NETCONF session with a NETCONF-enabled device on the network and to obtain and manipulate its
configuration data.

18.2.5 Workflow in application practice

In practical application, we use the YANG language to model the device and generate the YANG model. The model is then
instantiated to generate configuration files in XML format. The device was then configured using this configuration file as input

via netopeer.

PSRN

network

Figure 58. Workflow for netopeer

18.3 Installing Netopeer2-cli on Ubuntu18.04

Use the following steps for installing Netopeer2-cli onUbuntu18.04 operating systems.

1. Install the following packages:

$ sudo apt install -y git cmake build-essential bison autoconf dh-autoreconf flex
$ sudo apt install -y libavl-dev libprotobuf-c-dev protobuf-c-compiler zliblg-dev
$ sudo apt install -y libgcrypt20-dev libssh-dev libev-dev libpcre3-dev

2. Install libyang:

git clone https://github.com/CESNET/libyang.git
cd libyang;

git checkout v1.0-r4 -b v1.0-r4

mkdir build; cd build

cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr oo

make

sudo make install

W v v W »n

3. Install sysrepo(v0.7.8):

S git clone https://github.com/sysrepo/sysrepo.git
$ cd sysrepo
$ git checkout v0.7.8 -b v0.7.8

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 202/ 237

NXP Semiconductors

mkdir build; cd build

cmake -DCMAKE BUILD TYPE=Release —DCMAKE_INSTALL_PREFIX:PATH=/usr
make

sudo make install

v U U

4. Install libnetconf2:

git clone https://github.com/CESNET/libnetconf2.git
cd libnetconf2

git checkout v0.12-r2 -b v0.12-r2

mkdir build; cd build

cmake —DCMAKE_INSTALL_PREFIX:PATH:/usr

make

w W »n W W W

sudo make install

5. Install protobuf:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf

git submodule update --init --recursive

./autogen. sh

./configure

make

sudo make install

W v v v W W

sudo ldconfig # refresh shared library cache.

6. Install Netopeer2-cli(v0.7-r2):

git clone https://github.com/CESNET/Netopeer2.git
cd Netopeer2

git checkout v0.7-r2 -b v0.7-r2

cd cli

cmake —DCMAKEiINSTALLiPREFIX:PATH=/uSr

make

n W W W v v

sudo make install

18.4 Configuration

18.4.1 Enabling NETCONF feature in OpenlL
Build the image using the below command to enable the NETCONF feature:

make nxp 1s1028ardb-64b _defconfig
or

make nxp 1sl02latsn defconfig
Users can find detailed configuration with the make menuconfig command, as shown below:

Target packages ->

Hardware handling --->
NXP QorIQ libraries --->
-*- gorig-netopeer2-keystored

-*- gorig-netopeer2-server
[*] gorig-sysrepo-tsn

Open Industrial User Guide, Rev. 1.9, 09/2020

NETCONF/YANG

User's Guide

203 /237

NXP Semiconductors

NETCONF/YANG

sysrepo-tsn is daemon application to implement tsn configuration based on sysrepo. It was enabled in
nxp_Is1028ardb-64b_defconfig and nxp_ls1021atsn_defconfig.

NOTE
» For LS1028ARDB board, Qbv, Qbu, Qci, stream identification in CB, IP, MAC, and VLAN are supported.

* For LS1021ATSN board, Qbv, IP, MAC and VLAN are supportet.

+ sysrepo-tsn was only verified in environment build by nxp_Ils1028ardb-64b_defconfig and
nxp_ls1021atsn_default configuration.

18.4.2 Netopeer2-server

The netopeer2-server is the NETCONF protocol server running as a system daemon. The netopeer2-server is based on sysrepo
and libnetconf2 library.

» -U listen locally on a unix socket
» -d debug mode (do not daemonize and print verbose messages to stderr instead of syslog)
» -V: Show program version.

 -v level verbose output level(0 : errors, 1 : errors and warnings, 2 : errors, warnings and verbose messages).

18.4.3 Netopeer2-cli

The netopeer2-cli is command line interface similar to the NETCONF client. It serves as a generic NETCONF client providing a
simple interactive command line interface. It allows user to establish a NETCONF session with a NETCONF-enabled device on
the network and to obtain and manipulate its configuration data. netopeer2-cli is limited to a single NETCONF connection at a time
via a forward or a reverse (Call Home) connecting method.

18.4.3.1 Netopeer2 CLI commands

Following are the Netopeer2 CLI commands:

1. help: Displays a list of commands. The --help option is also accepted by all commands to show detailed information about
the command.

2. connect: Connects to a NETCONF server.
connect [--help] [--ssh] [--host <hostname>] [--port <num>] [--login <username>]

The connect command has the following arguments:

» --login username: Specifies the user to log in as on the NETCONF server. If not specified, current local username
is taken.

» --port num
— Port to connect to on the NETCONF server. By default, port 830 for SSH or 6513 for TLS transport is used.
* host
— Hostname or ip-address of the target NETCONF server.
3. disconnect: disconnects from a NETCONF server.
4. commit

» Performs the NETCONF commit operation. For details, see RFC 6241 section 8.3.4.1.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 204 /237

NXP Semiconductors

NETCONF/YANG

5. copy-config: Performs NETCONF copy-config operation. For details, see RFC 6241 section 7.3.

copy-config [--help] --target runningl|startupl|candidatelurl:<url> (--source running|startup]
candidate|url:<url> | --src-config[=<file>])
[--defaults report-all|report-all-tagged|trim|explicit]
Where, the arguments are the following:

+ --defaults mode: Use: with the -defaults capability with specified retrieval mode. For details, refer to the RFC 6243
section 3 or WITH-DEFAULTS section of this manual.

» --target datastore: Specifies the target datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

+ --source datastore: Specifies the source datastore for the copy-config operation. For description of the datastore
parameter, refer to Netopeer2 CLI datastore.

6. delete-config Performs NETCONF delete-config operation. For more details see RFC 6241 section 7.4.
delete-config [--help] --target startup|url:<url>

Where
+ target datastore: Specifies the target datastore for the delete-config operation.
7. edit-config
Performs NETCONF edit-config operation. For details, see RFC 6241 section 7.2.
edit-config [--help] --target running|candidate (--config[=<file>] | --url <url>)
[--defop merge|replace|none] [--test set|test-only|test-then-set] [--error stop|
continue|rollback]
Where
+ --defop operation
— Specifies default operation for applying configuration data.
— merge: Merges configuration data at the corresponding level. This is the default value.
— replace: Edits configuration data completely replaces the configuration in the target datastore.

— none: The target datastore is unaffected by the edit configuration data, unless and until the edit configuration data
contains the operation attribute to request a different operation. For more info, see the EDIT-CONFIG section of
this document.

NOTE
ITo delete non-madatory items, nc:operation="delete" needs to be added into the end of start tag of the item to be
deleted. At the same time, the namespace xmins:nc="urn:ietf;params:xml:ns:netconf:base:1.0" also needs to be
added ioto start tag of the root node. Mandatory items can't be deleted individually, they can only be deleted with
their parent node.

* --error action
— Sets reaction to an error.

— Stop: Aborts the operation on first error. This is the default value.

— Continue: Continues to process configuration data on error. The error is recorded and negative response
is returned.

— Rollback: Stops the operation processing on error and restore the configuration to its complete state at the start
of this operation. This action is available only if the server supports rollback-on-error capability (see RFC 6241
section 8.5).

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 205/ 237

NXP Semiconductors

NETCONF/YANG

» --test option

— Performs validation of the modified configuration data. This option is available only if the server
supports :validate:1.1 capability (see RFC 6241 section 8.6).

— set: Does not perform validation test.
— test-only: Does not apply the modified data, only perform the validation test.

— test-then-set: Performs a validation test before attempting to apply modified configuration data. This is the
default value.

+ --config file

— Specify path to a file containing edit configuration data. The content of the file is placed into the config element
of the edit-config operation. Therefore, it does not have to be a well-formed XML document with only a single root
element. If neither --config nor --url is specified, user is prompted to write edit configuration data manually. For
examples, see the EDIT-CONFIG section of this document.

+ —-url URI

— Specifies remote location of the file containing the configuration data hierarchy to be modified, encoded in XML
under the element config in the urn:ietf:params:xml:ns:netconf:base:1.0 namespace. Note, that this
differs from file parameter, where the config element is not expected.

« --target

— Target datastore to modify. For description of possible values, refer to Netopeer2 CLI datastore. Note that the url
configuration datastore cannot be modified.

8. get: Performs NETCONF get operation. Receives both the status as well as configuration data from the current running
datastore. For more details see RFC 6241 section 7.7. The command format is as follows:

get [--help] [--filter-subtree[=<file>] | --filter-xpath <XPath>] [--defaults report-all|report-
all-tagged|trim|explicit] [--out <file>]

+ --defaults mode
— Use with the -defaults capability with specified retrieval mode. For more details see RFC 6243 section 3 or
WITH-DEFAULTS section of this manual.
« -filter [file]

— Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path
to the file containing the filter specification. If the path is not specified, user is prompted to write the filter
specification manually.

9. get-config Performs NETCONF get-config operation. Retrieves only configuration data from the specified
target_datastore. For details, refer to RFC 6241 section 7.1.

get-config [--help] --source running|startup|candidate [--filter-subtree[=<file>] | --filter-
xpath <XPath>]
[--defaults report-all|report-all-tagged|trim|explicit] [--out <file>]

10. --defaults mode

+ Use: with the -defaults capability with specified retrieval mode. For more details see RFC 6243 section 3 or
WITH-DEFAULTS section of this manual.

11. -filter [file]

 Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path to the file
containing the filter specification. If the path is not specified, user is prompted to write the filter specification manually.

12. --target

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 206 / 237

NXP Semiconductors

NETCONF/YANG

» Target datastore to retrieve. For description of possible values, refer to Netopeer2 CLI datastore. Note, that the url
configuration datastore cannot be retrieved.

13. lock
Performs the NETCONF 10ck operation to lock the entire configuration datastore of a server. For details, see RFC 6241
section 7.5.
lock [--help] --target running|startup|candidate
Where the

» —target: specifies the target datastore to lock. For description of possible values, refer to Netopeer2 CLI datastore.
Note, that the url configuration datastore cannot be locked.

14. unlock: Performs the NETCONF unlock operation to release a configuration lock, previously obtained with the 10ck
operation. For more details see RFC 6241 section 7.6.

unlock [--help] --target running|startup|candidate

where

« --target: specifies the target datastore to unlock. For description of possible values, refer to Netopeer2 CLI datastore.
Note, that the url configuration datastore cannot be unlocked.

15. verb
» Enables/disables verbose messages.
16. quit

* Quits the program.

18.4.3.2 Netopeer2 CLI datastore
Following are the netopeer2 CLI datastores:
* running
— This is the base NETCONF configuration datastore holding the complete configuration currently active on the device.
This datastore always exists.
« startup

— The configuration datastore holding the configuration loaded by the device when it boots. This datastore is available only
on servers that implement the : startup capability.

» candidate

— The configuration datastore that can be manipulated without impacting the device's current configuration and
that can be committed to the running configuration datastore. This datastore is available only on servers that
implement : candidate capability.

e url:URI

— Refers to a remote configuration datastore located at URI. The file that the URI refers to contains
the configuration data hierarchy to be modified, encoded in XML under the element config in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace. This datastore is available only on servers that implement
the :ur1 capability.

18.4.4 Sysrepod

Sysrepo deamon provides the functionality of the datastore on the system (executes the system-wide Sysrepo Engine) and should
normally be automatically started by system startup. However, auto-start is not configured by cmake install operation and user
need to configure it manually, accroding to the guidelines of user's system.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 207 /237

NXP Semiconductors

NETCONF/YANG

Usage: sysrepod [-h] [-V] [-d] [-] <level>]
Options:
» -h Prints usage help.
 -v Prints version.
» -d Debug mode - daemon will run in the foreground and print logs to stderr instead of syslog.
* -l <level> Sets verbosity level of logging:
0 = all logging turned off
1 = log only error messages
2 = (default) log error and warning messages
3 = log error, warning and informational messages

4 = log everything, including development debug messages

18.4.5 Sysrepocfg

sysrepocfg is a command-line tool for editing, importing and exporting configuration stored in Sysrepo datastore. It allows the user
to edit startup or running configuration of specified module in preferred text editor and to propagate the perfomed changes into
the datastore transparently for all subscribed applications. Moreover, the user can export the current configuration into a file or
get it printed to the standard output and, similarly, an already prepared configuration can be imported from a file or read from the
standard input.

In the background, sysrepocfg uses Sysrepo client library for any data manipulation rather than directly accessing configuration
data files, thus effectively inheriting all main features of Sysrepo, such as YANG-based data validation, full transaction and
concurrency support, and, perhaps most importantly, subscribed applications are notified about the changes made using
\fBsysrepocfg\fP and can immediately take the new configuration into account.

18.4.6 Sysrepocil
The sysrepoctl provides fuctions to manage modules. It can be configured using the options and commands described below.
operation-operations

» --help: Prints the generic description and a list of commands. The detailed description and list of arguments for the specific
command are displayed by using --he1p argument of the command.

» —-install: Installs specified schema into sysrepo (--yang or --yin must be specified).

+ --uninstall: Uninstalls specified schema from sysrepo (--module must be specified).

 --list: Lists YANG modules installed in sysrepo (note that Conformance Installed implies also Implemented).
« —change : Changes specified module in sysrepo (--module must be specified).

» --feature-enable: Enables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

» —feature-disable: Disables a feature within a module in sysrepo (feature name is the argument, --module must be
specified).

Other-options
« —-yang : Path to the file with schema in YANG format (--install operation).
» --yin : Path to the file with schema in YIN format (--install operation).

» --module : Name of the module to be operated on (--change, --feature-enable, --feature-disable operations, --uninstall -
several modules can be delimited with ',').

» --permissions : Access permissions of the module's data in chmod format (--install, --change operations).

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 208 /237

NXP Semiconductors

NETCONF/YANG
Examples
* Install a new module by specifying YANG file, ownership and access permissions:
sysrepoctl --install --yang=/home/user/ietf-interfaces.yang --owner=admin:admin --permissions=644
» Change the ownership and permissions of an existing YANG module:
sysrepoctl --change --module=ietf-interfaces --owner=admin:admin --permissions=644
» Enable a feature within a YANG module:
sysrepoctl --feature-enable=if-mib --module=ietf-interfaces
« Uninstall 2 modules, second one is without revision:
sysrepoctl --uninstall --module=mod-a,mod-b --revision=2035-05-05
18.4.7 Operation examples
The following figure describes the steps to configure device via netopeer2:
Ubuntu/Centos computer Remote device
IP:192.168.1.2 IP:192.168.1.1
Create a NETCONF
session Create new session
< hello |
‘ sync datastore ‘ — Copy config from running
datastore to candidate
< ok ‘ datastore
‘ Lock datastore ‘ Lock
candidate/running/startup
< ok | datastore
[
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 209/237

NXP Semiconductors

NETCONF/YANG

Modify running datastore h Copy configuration in
(xxx.xml is configuration xxx.xml to running
instance file that conform to datastore
YANG model) < ok |
‘ Check configuration ‘ — retrive cc&nl:g ftrom running
atastore
< ok \
‘ Unlock datastore ‘ Unlock
candidate/running/startup
< ok | datastore
End the NETCONF session — Free the session

Figure 59. Steps to configure device via netopeer2

In sysrepo-tsn, there are some instance files to configure TSN features on LS1028ARDB board:
* Instance files for TSN configuration

Users can configure TSN functions of LS1028 ARDB board using these instance files. Before starting, make sure that sysrepod,
sysrepo-plugind, sysrepo-tsn and netopeer2-server are running on the board. Use the following steps to configure TSN feature
on LS1028ARDB board.

1. Start netopeer2-cli on the computer with netopeer2-cli installed:
$ netopeer2-cli
2. Connect to netopeer2-server on LS1028ARDB board (use the IP on LS1028ARDB, here 10.193.20.53 is example):
> connect --login root --host 10.193.20.53
3. Get status data of server:
> get
4. Get configuration data in running datastore:
> get-config --source running
5. Cofigure QBV feature of LS1028ARDB with gbv-eno0-enable.xml
> edit-config --target running —-config=gbv-eno0-enable.xml
6. Check configuration data of QBV:

> get-config --source running --filter-xpath /ietf-interfaces:interfaces/interface[name='eno0']/
ieee802-dotlg-sched:gate-parameters

7. Copy configuration data in running datastore to startup datastore:

> copy-config --source running --target startup

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 210/ 237

https://github.com/openil/sysrepo-tsn
https://github.com/openil/sysrepo-tsn/tree/master/Instances
https://github.com/openil/sysrepo-tsn/blob/master/Instances/qbv-eno0-enable.xml

NXP Semiconductors

8. Disconnect with netopeer2-server:

> disconnect

18.4.8 Application scenarios

1. Prerequisites

a. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli
b. Connect to notopeer2-server:

> connect --login root --host 10.193.20.53

2. Config IP address

a. Edit configuration file, change Ethernet interface name and IP:
$ vim ietf-ip-cfg.xml

b. Send configuration file:

> edit-config --target running --config=ietf-ip-cfg.xml

3. Config MAC address for bridge

a. Create a bridge named br1

$ ip link add name br1 type bridge

b. Edit configuration file, change bridge name and MAC:
$ vim ietf-mac-cfg.xml

c. Send configuration file:

> edit-config --target running --config=ietf-mac-cfg.xml

4. Add VLAN for Ethernet interface

a. Create bridge named "br1" if not existing

$ ip link add name br1 type bridge

b. Edit configuration file, change interface name and VLAN ID:
$ vim ietf-vlan-cfg.xml

c. Send configuration file:

> edit-config --target running --config=ietf-vlan-cfg.xml

5. Config VLAN ID and priority filter

a. Edit configuration file, change interface name and action_spec:

$ vim ietf-br-vlan-cfg.xml
b. Send configuration file:

> edit-config --target running --config=ietf-br-vlan-cfg.xml

6. Config LS1028ARDB Qbv via tc
a. Edit configuration file, change interface name and VLAN ID:

$ vim gbv-swp0-enable.xml

Open Industrial User Guide, Rev. 1.9, 09/2020

NETCONF/YANG

User's Guide

211/237

NXP Semiconductors

b. Send configuration file:
> edit-config --target running --config=qbv-swp0-enable.xml
c. Show the result

tc qdisc show dev swp0

Note: If want to use tc or ethtool instead of libtsn, should enable the following definition in menuconfig:

config BR2_PACKAGE_QORIQ SYSREPO TSN_TC
bool "enable tc command to configure tsn"

7. Config LS1028ARDB Qci via tc

a. Create bridge named "switch" if not existing

ip link add name switch type bridge

b. Edit and send configuration file:

> edit-config --target running --config=switch-qci-fm-gate-enable.xml
c. Show the result

tc filter show dev swp0 ingress

d. Disable the configuration

> edit-config --target running --config=switch-qci-fm-gate-disable.xml
Note:

(1). the dest-address in instance file should be learned by switch

(2). should send switch-qci-fm-gate-disable.xml after switch-qci-fm-gate-enable.xml

8. Config LS1028ARDB Qbu via ethtool

a. Edit and send configuration file:

> edit-config --target running --config=qbu-swp0.xml
b. Show the result

ethtool --show-frame-preemption swp0

9. Config SJA1105 Qbv via tc

a. Edit and send configuration file:

> edit-config --target running --config=qbv-swp5-tc.xml
b. Show the result

tc qdisc show dev swp5

10. Config SUIA1105 Qci gate via tc

a. Create bridge named "switch" if not existing

ip link add name switch type bridge

b. Edit and send configuration file:

> edit-config --target running --config=switch-qci-gate-swp2-enable.xml
c. Show the result

tc filter show dev swp2 ingress

Open Industrial User Guide, Rev. 1.9, 09/2020

NETCONF/YANG

User's Guide

212/237

NXP Semiconductors

NETCONF/YANG

Note: if want to test Qci flow meter, can send switch-qci-fm-swp2-enable.xml

11. Config i.MX8MP Qbv via tc

a. Edit and send configuration file:

> edit-config --target running --config=qbv-eth1-enable.xml

b. Show the result

tc qdisc show dev eth1

12. Config i.MX8MP Qbu via ethtool

a. Edit and send configuration file:

> edit-config --target running --config=qbu-eth1.xml

b. Show the result

ethtool --show-frame-preemption eth1

18.5 Web Ul demo

The Web Ul allows the remote control of the YANG model. This demo is already added to tsntool (https://github.com/openil/
tsntool) in the folder tsntool/demos/cnc/. Follow the procedure mentioned below for this demo.

1. Install related libraries

Suppose user is installing the demo on a Centos PC or Ubuntu PC as the WebServer. CNC demo requires python3 and
related libraries:pyang, libnetconf, and libssh.

For Ubuntu18.04

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

n W W W v »n

For Centos 7.2

sudo
sudo
sudo
sudo

W W W »

sudo

apt
apt
apt
apt
apt
apt
apt
apt

yum
yum
yum
yum
yum

2. Install pyang

v O W

cd pyang
git checkout b92b17718de53758c4c8a05b6818eatb6fc0cd4d8 -b fornetconfl
sudo python setup.py install

3. Install libssh

install
install
install
install
install
install
install
install

install
install
install
install
install

-y libtool python-argparse libtool-bin python-sphinx libffi-dev
-y libxsltl-dev libcurl4-openssl-dev xsltproc python-setuptools
-y zliblg-dev libssl-dev python-libxml2 libaugeas-dev

-y libreadline-dev python-dev pkg-config libxml2-dev

-y cmake openssh-server

-y python3-sphinx python3-setuptools python3-1libxml2

-y python3-pip python3-dev python3-flask python3-pexpect

-y libnss-mdns avahi-utils

libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-devel
doxygen libevent readline.x86 64 ncurses-libs.x86 64
ncurses-devel.x86 64 libssh.x86 64 libssh2-devel.x86 64
libssh2.x86 64 libssh2-devel.x86 64

nss-mdns avahi avahi-tools

git clone https://github.com/mbj4668/pyang.git

$ git clone https://git.libssh.org/projects/libssh.git

$ cd libssh

S git checkout fel8ef279881b65434e3e44fc4743e4blc7cb891 ~-b fornetconfl

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

213/237

https://github.com/openil/tsntool
https://github.com/openil/tsntool

NXP Semiconductors

4.

n U W

NETCONF/YANG

mkdir build; cd build/
cmake

make

sudo make install

NOTE
There is a version issue for 1ibssh installation on Ubuntu below version 16.04. Apt-get install libssh may get
version 0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall by downloading
the source code and installing it manually.

Install libnetconf

wn W »n W W

git clone https://github.com/CESNET/libnetconf.git

cd libnetconf

git checkout 8e934324e4blelba6077b537e55636eld7c85aed -b fornetconfl
autoreconf --force --install

./configure

make

sudo make install

5. Get tsntool source code

6.

git clone https://github.com/openil/tsntool.git

cd tsntool/demos/cnc/

Install python library

In the below command segments,

* PATH-to-libnetconf is the path to the libnetconf source code.

* PATH-to-tsntool is the path to the tsntool source code.

$

The 1ibnetconf needs to add two patches based on the below commit point to fix the demo python support.

cd PATH-to-libnetconf/libnetconf

Ensure that the commit id is 313fdadd15427£7287801b92fe81££84c08dd970.

W W v W »

git checkout 313fdaddl15427£7287801b92fe81££84c08dd970 -b cnc-server

cp PATH-to-tsntool/demos/cnc/*patch

git am 000l-1lnctool-to-make-install-transapi-yang-model-proper.patch
git am 0002-automatic-python3-authorizing-with-root-password-non.patch
cd PATH-to-libnetconf/libnetconf/python

python3 setup.py build; sudo python3 setup.py install

NOTE
If rebuilding python lib, user need to remove the build folder by command rm build -rf before rebuilding. On
the OpenlL board, avahi-daemon and netopeer server are required. Remember to also add the netopeer2-server
run at boards.

7. Setup avahi daemon and disable the ipv6:

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

214 /237

https://github.com/openil/tsntool.git

NXP Semiconductors

NETCONF/YANG
For this, edit /etc/avahi/avahi-daemon.conf

use-ipvé6=no
publish-a-on-ipvé6=no

sudo systemctl start avahi-daemon.service
#If the hostname is not the OpenIlL, change to OpenIL
avahi-set-host-name OpenIL

8. Packages required by OpenlL Board

On the OpenIl board, avahi-daemon, and netopeer server are required:

BR2 PACKAGE AVAHI=y

BR2 PACKAGE AVAHI AUTOIPD=y

BR2 PACKAGE AVAHI DAEMON=y

BR2 PACKAGE AVAHI LIBDNSSD COMPATIBILITY=y

BR2 PACKAGE NSS_MDNS=y

BR2 PACKAGE NETOPEER2 SERVER=y

Openil update the netopeer server to version2. Remember to make the netopeer2-server run at boards.

9. Start the web server

* Input the command below at shell into the folder /tsntool/demos/cnc/:

sudo python3 cnc.py

» Then, input the IP of WebServer with the port 8180 at browser. For example:

http://10.193.20.147:8180

« Itis recommended to tracking the boards by tsntool to checking the real configuration for comparison.

« ltis also recommended to tracking if the netopeer2-server is running ata board or not.

NOTE
Limitations of Web Ul are:

» Setup server on a Centos PC or Ubuntu PC could be more compatible.
» Supports Qbv, Qbu and Qci in current version.

» For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or
else, user will got failure for setting Stream-filter without a stream gate id link to.

* The boards and the web server PC are required to be in same IP domain since the bridge may block the
probe frames.

18.6 Troubleshooting

1. Connect fails at client side:

nc ERROR: Remote host key changed, the connection will be terminated!
nc ERROR: Checking the host key failed.
cmd_connect: Connecting to the 10.193.20.4:830 as user "root" failed.

Fixing:
The reason is that the SSHD key changed at the server.

» User need to get host list with command knownhosts first.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 215/ 237

NXP Semiconductors

NETCONF/YANG
» Then remove related item. For example knownhosts —del 19.
2. Request could not be completed because the relevant data model content does not exist.
type: application
tag: data-missing
severity: error
path: /ietf-interfaces:interfaces/interface[name='eno0']/ieee802-dotlg-sched:gate-

parameters/admin-gate-states

message: Request could not be completed because the relevant data model content does not exist.
Fixing:
The reason is that the configuration data in xpath does not exist in the datastore. Such as deleting a node that does not exist.

When encountering such an error, user can get configuration data in the board with get-config command, and check
whether the operation type(add/delete/modify) of the node in the path is reasonable or not,.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 216 /237

NXP Semiconductors

Chapter 19
OTA implementation

NXP's LS1021-loT, LS1012ARDB, LS1043ARDB, LS1046ARDB, and LS1028ARDB platforms support OTA (Over-the-air)
requirements. This section provides an introduction to OTA use cases, scripts, configuration settings for implementation and
server preparation, and a test case. It also lists the OTA features supported by each hardware platform.

Notice: OTA is not enabled in OpenlL v1.9 release.

19.1 Introduction

OTA refers to a method of updating U-Boot, kernel, file system, and even the full firmware to devices through the network. If the
updated firmware does not work, the device can rollback the firmware to the latest version automatically.

NOTE
While updating U-Boot, there is no hardware method to rollback the device automatically, hence the device might
not be rolled back, once the U-Boot is not working.

« version.json: This is a JSON file which saves the board name and version of each firmware. Below is an example of
version.json.

{

"updatePart":"kernel", /* Name of firmware image which has been updated. */
"updateVersion":"1.0", /* Version of firmware image which has been updated. */
"all":"1.0", /* version of the full firmware image which has been used now */
"u-boot":"1.0", /* version of the u-boot image which has been used now */
"kernel":"1.0", /* version of the kernel image which has been used now */
"filesystem":"1.0", /* version of the filesystem image which has been used now */
"boardname":"1s102laiot" /* used to get the corresponding firmware from server*/

"URL":"https://www.nxp.com/lgfiles/iiot" /* used to get the corresponding firmware from server*/

}

« update.json: This file is stored in server, it saves the name and version of firmware image which will be updated. Below is
a sample update.json file:

{

"updateStatus":"yes", /* set yes or no to tell devices is it need to update. */
"updatePart":"kernel", /* name of update firmware. */

"updateVersion":"1.0", /* version of update firmware */

}

« ota-update: This script can get a JSON file named update.json from server, then parse the file and get the new firmware
version to confirm whether to download it from server or not. It finally writes the firmware into the SD card instead of
the old one. After that, save the "updatePart" and "updateVersion" into version.json, and mark the update status on 4080
block of SD card to let U-Boot know it.

« ota-versioncheck: This script checks if the firmware has been updated, then updates the version of the update part in
version.json, and cleans the flag of update status on 4080 block of SD card. This script runs automatically each time the
system restarts.

« ota-rollback: This script runs on the ramdisk filesystem after the filesystem update fails. It gets the old firmware version
from the version.json file and then updates it from the server.

19.2 Platform support for OTA demo
The OTA demo is supported by four NXP hardware platforms. Following is the list of features supported by each platform:

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 217 1 237

NXP Semiconductors

OTA implementation

1. LS1021A-loT
» Full SD card firmware update
» U-Boot image update kernel image update
* File system image update
» Full SD card firmware update
2. LS1012ARDB
» Full SD card firmware update
+ RCW and U-Boot image update on QSPI flash
» Kernel image update and rollback
+ File system image update and rollback
3. LS1043ARDB
» Full SD card firmware update
» U-Boot image update
» Kernel image update and rollback
 File system image update and rollback
4. LS1046ARDB
» Full SD card firmware update
+ U-Boot image update
» Kernel image update and rollback

» File system image update and rollback

19.3 Server requirements

This demo provides a sample server to update images for the v1.0 release. In case user wants to use another server, user
need to change the URL to user's server path at “target/linux/layerscape/image/backup/version.json” such as
the following:

"URL":"https://www.nxp.com/lgfiles/iiot/"

The server must include a JSON file named update. json that can send information to device boards. Below is a sample
update.json file.

/* set yes or no to tell devices is it need to update. */
"updateStatus":"yes",

/* which part to update, you can write "all", "u-boot", “kernel”, "filesystem" */
"updatePart":"filesystem",

/* version of update firmware */
"updateVersion":"1.0",

Images for OTA are stored in the path:
<updateVersion>/<boardname>/

where the <boardname> can be one of these: 1s1021aiot, 1s1012ardb-64b, 1s1012ardb-32b, 1s1043ardb-64Db,
1s1043ardb-32b, 1s1046ardb-64b, 0or 1s1046ardb-32b.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 218/ 237

NXP Semiconductors

OTA implementation

Images must be named as following:
* u-boot.bin: U-Boot image for update. In 1s1012ardb folder, this image includes RCW and U-Boot.
* uImage: kernel image for update
* rootfs.ext4: filesystem image for update

* firmware sdcard.bin: a full firmware of SD card image.

19.4 OTA test case

1. Plug network cable into Eth1 on the board. This enables the network after the system is running.
2. Update U-Boot using the following steps:

» Update the .json on server as shown in the following example:

{

"updateStatus":"yes",
"updatePart":"u-boot",
"updateVersion":"1.0",

* Upload the u-boot image on server path: 1.0/<boardname>/u-boot.bin
* Run ota-update command on device board.
3. Updating the file system:
» Set the "updatePart" to "filesystem" in update.json.
+ Upload the filesystem image on server path: 1.0/<boardname>/rootfs.ext4
* Run ota-update command on the device board.
4. Updating full firmware
+ Set the "updatePart" to "all" in update.json.
 Upload the full firmware image on server path: 1.0/<boardname>/firmware_sdcard.bin
* Run ota-update command on device board.

5. Rollback test:

» The Kernel and file system can use a wrong image to upload on the server and test update on device.

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

219/237

NXP Semiconductors

Chapter 20
EdgeScale client

This chapter describes edgescale, its features and the procedure to use Edgescale on NXP supported hardware platforms.

Notice: EdgeScale client is not enabled in OpenlL v1.9 release.

20.1 What is EdgeScale

EdgeScale is a unified, scalable, and secure device management solution for Edge Computing applications. It enables OEMs and
developers to leverage cloud compute frameworks like AWS Greengrass, Azure 0T and Aliyun on Layerscape devices. It provides
the missing piece of device security and management needed for user to securely deploy and manage a large number of Edge
computing devices from the cloud. End-users and developers can use the EdgeScale cloud dashboard to securely enroll Edge
devices, monitor their health, attest and deploy container applications and firmware updates.

EdgeScale can also be used as a development environment to build containers and generate firmware.

20.2 Edgescale features
Following are the features supported by Edgescale:
» EdgeScale dashboard for users
» Secure device enrolment
» Secure key/certificate provisioning
» OTA: firmware update (LS1012A, LS1043. LS1046, or LS1028)
» Device status monitoring on the cloud
» Dynamic deployment of container-based applications

» The above specified features are currently supported in LSDK. For more details, please visit: EDGESCALE: EdgeScale for
Secure Edge Computing

20.3 Building EdgeScale client
To Build the EdgeScale client in OpenlL for LS1043A, LS1046A, and LS1028A, follow the configuration below:

Make menuconfig

Target packages --->
Edge-scale service --->
[*] gorio edgescale eds
[*] gorio eds kubelet
[*] gorio eds bootstrap

20.4 Procedure to start EdgeScale

For complete details on how to start EdgeScale, visit the URL https://doc.edgescale.org/.

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 220/ 237

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/edgescale-for-secure-edge-computing:EDGESCALE
https://doc.edgescale.org/

NXP Semiconductors

NOTE

Follow these steps after downloading the device identification info file (which is a script file):

1. Copy the script file to the DUT and run it using the command below:
sh xxxx.sh /dev/mmcblk0

2. Then, reboot the board.

3. Run the below command to start edgescale client in Linux prompt:

sh /usre/local/edgescale/bin/startup.sh

Open Industrial User Guide, Rev. 1.9, 09/2020

EdgeScale client

User's Guide

221/237

NXP Semiconductors

Chapter 21
Vivante GPU

The GPU consists of a 3D graphics core and a 2D graphics core.
3D graphics core features are the following:
» Supports 166 million triangles/sec
» Supports 1 Giga pixel/sec fill rate
» Supports 16 GFLOPs
» Supports OpenGL ES 1.1, 2.0, 3.0, 3.1
» Supports OpenCL 1.2
* Vulkan
2D graphics core features are:
» Supports multi-source composition
» Supports one-pass filter
» Supports tile format from 3D graphics core
» Supports tile format from VPU
Step1: Software setting and configuration
Use the following steps to enable GPU support on the target board:

» Configure the target board with nxp_Is1028ardb-64b* or imx8mpevk_*, for example: nxp 1s1028ardb-64b defconfig

$ make nxp 1s1028ardb-64b defconfig

» Enable weston and related package using the make menuconfig command:

Target packages --->
Hardware handling --->
[*] Freescale i.MX libraries --->

[*] firmware-imx

[*] imx-gpu-g2d

S imx-gpu-viv

Output option (Wayland) --->

=] install examples

—*= libdrm-imx

* Build the image:
make -3j8

Step 2: Hardware setup

» For LS1028ARDB, connect the monitor and LS1028 ARDB with DP cable.

¢ For i.MX8MPEVK, connect the monitor and i. MX8MPEVK with HDMI cable.
Insert the USB mouse into USB port in the keyboard.
Step 3: Implement the demo of GPU

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 222 /237

NXP Semiconductors

Vivante GPU

A. OpenCL information

root@LS1028ARDB: ~# cd /usr/share/examples/viv_samples/clll/UnitTest
root@LS1028ARDB-Ubuntu: /usr/share/examples/viv_samples/clll/UnitTest# ./clinfo

>>>>>>>> . /clinfo Starting...
Available platforms: 1

Platform ID: O

CL_PLATFORM NAME : Vivante OpenCL Platform

CL PLATFORM PROFILE: FULL PROFILE

CL PLATFORM VERSION: OpenCL 1.2 V6.4.0.p2.234062
CL_PLATFORM VENDOR: Vivante Corporation

CL_PLATFORM EXTENSIONS: cl khr icd

Available devices: 1
Device ID: 0
Device Ptr: 0xd04742f£0

CL_DEVICE NAME: Vivante OpenCL Device GC7000UL.6202.0000
CL DEVICE VENDOR: Vivante Corporation

CL DEVICE TYPE: GPU
CL_DEVICE OPENCL C VERSION: OpenCL C 1.2
CL_DEVICE VENDOR ID: 0x00564956
CL DEVICE PLATFORM: 0x9e272728
CL DEVICE VERSION: OpenCL 1.2
CL DEVICE PROFILE: FULL_PROFILE
CL DRIVER VERSION: OpenCL 1.2 V6.4.0.p2.234062
CL_DEVICE MAX COMPUTE UNITS: 1
CL DEVICE MAX WORK ITEM DIMENSIONS: 3

CL DEVICE MAX WORK ITEM SIZES[O]: 512

CL DEVICE MAX WORK ITEM SIZES[1]: 512

CL DEVICE MAX WORK ITEM SIZES[2]: 512
CL DEVICE MAX WORK GROUP SIZE: 512
CL DEVICE MAX CLOCK FREQUENCY: 650 MHz
CL DEVICE IMAGE SUPPORT: Yes

CL DEVICE MAX READ IMAGE ARGS: 128

CL DEVICE MAX WRITE IMAGE ARGS: 8

CL DEVICE IMAGE2D MAX WIDTH: 8192

CL DEVICE IMAGE2D MAX HEIGHT: 8192

CL_DEVICE IMAGE3D MAX WIDTH: 8192

CL DEVICE IMAGE3D MAX HEIGHT: 8192

CL DEVICE IMAGE3D MAX DEPTH: 8192

CL DEVICE MAX SAMPLERS: 16

B. Fourier transform based on GPU

root@LS1028ARDB-Ubuntu:~# cd /usr/share/examples/viv_samples/clll/fft/
root@LS1028ARDB-Ubuntu: /usr/share/examples/viv_samples/clll/fft# ./fft 16
Block size: 16

Print result: yes

Initializing device(s)...

Get the Device info and select Device...
of Devices Available = 1

of Compute Units = 1

compute units = 1

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 223 /237

NXP Semiconductors

Vivante GPU

Creating Command Queue...
log2 (fft size) = log2(l6)=4
Compiling radix-2 FFT Program for GPU...
creating radix-2 kernels...
Creating kernel fft radix2 0 (
Creating kernel fft radix2 1 (
Creating kernel fft radix2 2 (
Creating kernel fft radix2 3 (
Setting kernel args for kernel
Setting kernel args for kernel
Setting kernel args for kernel

w N P O

Setting kernel args for kernel
running kernel 0 (p=1)...
running kernel 1 (p=2)...
running kernel 2 (p=4)...
running kernel 3 (p=8)...
.000118 seconds
.000122 seconds
kernel 2 .000102 seconds
Kernel execution time on GPU (kernel 3 0.000076 seconds
Total Kernel execution time on GPU : 0.000418 seconds

Kernel execution time on GPU (kernel 0

o O O

(
Kernel execution time on GPU (kernel 1
Kernel execution time on GPU (

)
)
)
)

Successful.

C. OpenGL ES demo
kmscube is used to test OpenGL ES, it supports HDMI and eDP interface.

For eDP interface, 4K resolution is not supported due to firmware limitation.

root@LS1028ARDB: ~# kmscube
Using display 0x3107b6d0 with EGL version 1.5

EGL information:

version: "1.5"

vendor: "Vivante Corporation"

client extensions: "EGL_EXT client extensions EGL_EXT platform base EGL_KHR platform wayland
EGL_EXT platform wayland EGL KHR platform gbm"

display extensions: "EGL KHR fence sync EGL KHR reusable sync EGL KHR wait sync EGL KHR image
EGL KHR image base EGL KHR image pixmap EGL KHR gl texture 2D image EGL_KHR gl texture cubemap image
EGL_KHR_gl renderbuffer image EGL_EXT image dma buf import EGL_EXT_ image dma buf import modifiers
EGL KHR lock surface EGL KHR create context EGL KHR no config context EGL KHR surfaceless context
EGL_KHR_get_all proc_addresses EGL_EXT create context robustness EGL_EXT_ protected surface
EGL EXT protected content EGL EXT buffer age EGL ANDROID native fence sync
EGL WL bind wayland display EGL WL create wayland buffer from image EGL KHR partial update
EGL _EXT swap_ buffers with damage EGL KHR swap buffers with damage"

OpenGL ES 2.x information:

version: "OpenGL ES 3.1 V6.4.0.p2.234062"

shading language version: "OpenGL ES GLSL ES 3.10"

vendor: "Vivante Corporation"

renderer: "Vivante GC7000UL"

extensions: "GL OES vertex type 10 10 10 2 GL OES vertex half float GL OES element index uint
GL OES mapbuffer GL OES vertex array object GL OES compressed ETCl RGB8 texture
GL_OES_compressed_paletted texture GL_OES_texture npot GL_OES_rgb8_ rgba8 GL_OES_depth texture
GL_OES_depth texture cube map GL OES depth24 GL OES depth32 GL OES packed depth stencil
GL_OES fbo render mipmap GL OES get program binary GL OES fragment precision_high
GL_OES_standard derivatives GL_OES EGL image GL_OES EGL_sync GL OES texture stencil$8
GL OES shader image atomic GL OES texture storage multisample 2d array GL OES required internalformat
GL OES surfaceless context GL OES draw buffers indexed GL OES texture border clamp
GL_OES_texture buffer GL_OES_texture_ cube map array GL_OES_draw_elements_base_ vertex

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 224 | 237

NXP Semiconductors

Vivante GPU

GL_OES_texture half float GL OES texture float GL KHR blend equation advanced GL_ KHR debug

GL_KHR robustness GL KHR robust buffer access behavior GL EXT texture type 2 10 10 10 REV

GL_EXT texture compression_dxtl GL_EXT texture format BGRA8888 GL_EXT_ texture compression_s3tc
GL_EXT read format bgra GL_EXT multi draw_arrays GL_EXT_ frag depth GL_EXT_discard framebuffer
GL_EXT blend minmax GL_EXT multisampled render to_texture GL_EXT color_ buffer half float

GL_EXT color buffer float GL_EXT robustness GL EXT texture sRGB decode GL EXT draw buffers indexed
GL_EXT texture border clamp GL_EXT texture buffer GL_EXT texture cube map array

GL_EXT multi draw_indirect GL_EXT draw elements base vertex GL_EXT texture rg

GL _EXT protected textures GL EXT sRGB GL VIV direct texture "

Rendered 120 frames in 2.000008 sec (59.999758 fps)
Rendered 241 frames in 4.016689 sec (59.999663 fps)
Rendered 361 frames in 6.016730 sec (59.999368 fps)

Below is the snapshort on screen.

Figure 60. OpenGL ES demo with kmscube

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 225237

NXP Semiconductors

Chapter 22
Weston

Weston is the reference implementation of a Wayland, this section describes how to enable Weston on NXP platforms.

1. Software setting and configuration

Following the steps to enable weston support on target

» Configure the target board with nxp_Is1028ardb-64b* or imx8mpevk_*, for example: nxp_ls1028ardb-64b_defconfig

$ make nxp 1s1028ardb-64b defconfig

» Enable weston and related package with command "make menuconfig"

Target packages --->
Libraries --->
Graphics --->
-*- wayland
Hardware handling --->
[*] Freescale i1i.MX libraries --->
[] firmware-imx
[*] imx-gpu-g2d
—*-— imx-gpu-viv
Output option (Wayland) --->
L] install examples
== libdrm-imx
=¥ wayland-protocols-imx
Graphic libraries and applications (graphic/text) --->

[*] weston-imx
[*] X.org X Window System --->
-*- xkeyboard-config

 Build the image

2. Hardware setup

make -38

For LS1028ARDB, connect the monitor and LS1028ARDB with DP cable.

For i.MX8MPEVK, connect the monitor and i.MX8MPEVK with HDMI cable.

USB mouse and keyboard insert into USB port.

3. Run the lightweight desktop

root@LS1028ARDB: ~# mkdir -p /run/user/0/
root@LS1028ARDB: ~# export XDG_RUNTIME DIR="/run/user/0/"
root@LS1028ARDB: ~# weston --tty=1

Date:
[14:38:00.002]

2020-08-20 UTC

weston 8.0.0

https://wayland.freedesktop.org

Bug reports to: https://gitlab.freedesktop.org/wayland/weston/issues/
Build: 8.0.0

[14:38:00.002] Command line: weston --tty=1
[14:38:00.002] OS: Linux, 5.4.3-rtl, #1 SMP PREEMPT RT Tue Aug 18 14:49:14 CST 2020, aarché64
[14:38:00.002] Starting with no config file.
[14:38:00.005] Output repaint window is 16 ms maximum.
[14:38:00.007] Loading module '/usr/lib/libweston-8/drm-backend.so'
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 226 / 237

NXP Semiconductors

[14:38:
[14:38:
[14:38:
[14:38:
[14:38:
[14:38:
[14:38:

14:38:
14:38:
14:38:
14:38:

14:38:
14:38:
14:38:
14:38:
14:38:
14:38:

00.
00.
00.
00.
00.
00.
00.

00.
00.
00.
00.

00.
00.
00.
00.
00.
00.

050
054
054
054
054
056
208

224
224
224
224

224
310
311
311
311
311

initializing drm backend

using /dev/dri/card0

DRM: supports universal planes

DRM: supports atomic modesetting

DRM: supports picture aspect ratio

Loading module '/usr/lib/libweston-8/gl-renderer.so'

EGL client extensions: EGL_EXT client extensions

EGL_EXT platform base EGL KHR platform wayland

EGL_EXT platform wayland EGL_KHR platform gbm

EGL version: 1.5

EGL vendor: Vivante Corporation

EGL client APIs: OpenGL ES OpenGL OpenVG

EGL extensions: EGL KHR fence sync EGL KHR reusable sync
EGL KHR wait sync EGL_KHR image EGL KHR image base
EGL_KHR_image pixmap EGL_KHR gl texture 2D image
EGL_KHR_gl texture cubemap_image EGL_KHR gl renderbuffer image
EGL_EXT_image_dma_ buf_ import

EGL EXT image dma buf import modifiers EGL KHR lock surface
EGL KHR create context EGL_KHR no config context

EGL_KHR surfaceless_context EGL KHR get all proc_addresses
EGL EXT create context robustness EGL EXT protected surface
EGL_EXT_protected content EGL_EXT buffer age
EGL_ANDROID native fence sync EGL_WL _bind wayland display
EGL WL create wayland buffer from image EGL KHR partial update
EGL EXT swap buffers with damage

EGL _KHR swap buffers with damage
EGL_KHR_surfaceless_context available

GL version: OpenGL ES 3.1 V6.4.0.p2.234062

GLSL version: OpenGL ES GLSL ES 3.10

GL vendor: Vivante Corporation

GL renderer: Vivante GC7000UL

GL extensions: GL_OES vertex type 10 10 10 2
GL_OES_vertex half float GL_OES_element index uint

GL OES mapbuffer GL OES vertex array object
GL_OES_compressed ETC1_RGB8_texture

GL_OES compressed paletted texture GL OES texture npot
GL_OES rgb8 rgba8 GL OES depth texture
GL_OES_depth texture cube map GL OES depth24 GL OES depth32
GL_OES packed depth stencil GL OES fbo render mipmap
GL_OES_get program binary GL_OES_fragment precision_high
GL_OES_standard_derivatives GL_OES_EGL_image GL_OES_EGL_sync
GL_OES_texture stencil8 GL OES shader image atomic
GL_OES_texture storage multisample 2d array
GL_OES_required internalformat GL OES surfaceless context
GL OES draw buffers indexed GL OES texture border clamp

GL _OES texture buffer GL OES texture cube map array
GL_OES_draw_elements_base_vertex GL_OES_texture half float
GL_OES_texture float GL KHR blend equation_ advanced

GL_KHR debug GL_KHR robustness

GL_KHR robust buffer access behavior

GL EXT texture type 2 10 10 10 REV

GL_EXT_ texture compression_dxtl GL_EXT texture format BGRA8888
GL_EXT_texture compression_s3tc GL_EXT read_ format_bgra
GL_EXT multi draw arrays GL EXT frag depth

GL_EXT discard framebuffer GL_ EXT blend minmax

GL_EXT multisampled render to_ texture

GL_EXT color buffer half float GL_EXT color buffer float

GL _EXT robustness GL EXT texture sRGB decode

GL_EXT_ draw _buffers_indexed GL_EXT texture border clamp
GL_EXT texture buffer GL EXT texture cube map array

Open Industrial User Guide, Rev. 1.9, 09/2020

Weston

User's Guide

2271237

NXP Semiconductors

Weston
GL_EXT multi draw indirect GL_EXT draw elements base vertex
GL_EXT texture rg GL_EXT protected textures GL_EXT sRGB
GL_VIV direct_ texture
[14:38:00.311] GL ES 2 renderer features:
read-back format: BGRA
wl shm sub-image to texture: yes
EGL Wayland extension: yes
[14:38:00.343] warning: no input devices on entering Weston. Possible causes:
- no permissions to read /dev/input/event*
- seats misconfigured (Weston backend option 'seat', udev device property ID SEAT)
[14:38:00.343] failed to create input devices
[14:38:00.349] DRM: head 'DP-1' found, connector 56 is connected, EDID make 'DEL', model 'DELL
P2417H', serial 'C9G5D7561ECB'
[14:38:00.349] Registered plugin API 'weston drm output api vl' of size 24
[14:38:00.357] Chosen EGL config details: id: 41 rgba: 8 8 8 0 buf: 24 dep: 0 stcl: 0 int: 1-60
type: win|pix|pbf|swap preserved vis id: XRGB8888 (0x34325258)
[14:38:00.357] Output DP-1 (crtc 48) video modes:
1920x1080@60.0, preferred, current, 148.5 MHz
1600x900@60.0, 108.0 MHz
1280x1024@75.0, 135.0 MHz
1280x1024@60.0, 108.0 MHz
1152x864@75.0, 108.0 MHz
1024x768@75.0, 78.8 MHz
1024x768@60.0, 65.0 MHz
800x6000@75.0, 49.5 MHz
800x600@60.3, 40.0 MHz
640x480@75.0, 31.5 MHz
640x4800@59.9, 25.2 MHz
720x400@70.1, 28.3 MHz
[:38:00.357] Output 'DP-1' enabled with head(s) DP-1
4:38:00.357] Compositor capabilities:
arbitrary surface rotation: yes
screen capture uses y-flip: yes
presentation clock: CLOCK MONOTONIC, id 1
presentation clock resolution: 0.000000001 s
[14:38:00.359] Loading module '/usr/lib/weston/desktop-shell.so'
[14:38:00.367] launching '/usr/libexec/weston-keyboard'
[14:38:00.373] launching '/usr/libexec/weston-desktop-shell'
[14:39:23.341] eventO0 - Logitech USB Optical Mouse: is tagged by udev as: Mouse
[14:39:23.341] event0 - Logitech USB Optical Mouse: device is a pointer
[14:39:23.341] libinput: configuring device "Logitech USB Optical Mouse".
[14:39:23.342] associating input device eventO with output DP-1 (none by udev)
could not load cursor 'dnd-move'
could not load cursor 'dnd-copy'
could not load cursor 'dnd-none'
[14:39:33.459] event0 - Logitech USB Optical Mouse: device removed
[14:39:51.794] eventO0 - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
[14:39:51.794] eventO0 - Dell Dell USB Keyboard: device is a keyboard
[14:39:51.859] libinput: configuring device "Dell Dell USB Keyboard".
[14:39:51.859] associating input device eventO with output DP-1 (none by udev)
[14:40:03.937] eventO0 - Dell Dell USB Keyboard: device removed
[14:40:11.758] event0 - Logitech USB Optical Mouse: is tagged by udev as: Mouse
[14:40:11.758] event0 - Logitech USB Optical Mouse: device is a pointer
[14:40:11.758] libinput: configuring device "Logitech USB Optical Mouse".
[14:40:11.758] associating input device eventO with output DP-1 (none by udev)
[14:40:19.403] event0 - Logitech USB Optical Mouse: device removed
[14:40:29.454] eventO - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
[14:40:29.454] eventO - Dell Dell USB Keyboard: device is a keyboard
[14:40:29.454] libinput: configuring device "Dell Dell USB Keyboard".
[14:40:29.454] associating input device eventO with output DP-1 (none by udev)
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 228 /237

NXP Semiconductors

Weston
[14:41:00.156] eventO0 - Dell Dell USB Keyboard: device removed
14:42:29.287] eventO0 - Logitech USB Optical Mouse: is tagged by udev as: Mouse
14:42:29.287] event0 - Logitech USB Optical Mouse: device is a pointer

14:42:29.287
14:42:29.287
14:42:35.418
14:42:35.419
14:42:35.419
14:42:35.419

libinput: configuring device "Logitech USB Optical Mouse".
associating input device event0 with output DP-1 (none by udev)
eventl - Dell Dell USB Keyboard: is tagged by udev as: Keyboard
eventl - Dell Dell USB Keyboard: device is a keyboard

libinput: configuring device "Dell Dell USB Keyboard".
associating input device eventl with output DP-1 (none by udev)

Below is the snapshort

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 229 /237

NXP Semiconductors

Chapter 23

QT

This chapter introduces the QT feature for OpenlL and provides instructions on how to enable this feature on NXP's LS1028A
reference design board.

23.1 Introduction

Qt is a full development framework with tools designed to streamline the creation of applications and user interfaces for desktop,
embedded, and mobile platforms. For details, see http://doc.qt.io/qt-5/index.html

This section describes how to enable QT5 in OpenlL.

23.2 Software settings and configuration

Use the following steps to configure QTS5 on target board and build the images.

1. Configure the target board: The configuration file nxp 1s1028ardb-64b_defconfig support prebuild QT for

LS1028ARDB board. Configure the image by following command:

make nxp 1s1028ardb-64b_defconfig

2. Enable QT5: Use the command make menuconfig to configure the QT5:

Target packages ->

Graphic libraries and applications (graphic/text) ->

[*] ot5 —>

[*]
[*]
[*]
[*]
*
*
*
*
*
*
*
*

*

[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]

*

Compile and install examples (with code)

concurrent module
MySQL Plugin
PostgreSQL Plugin
guil module
widgets module
fontconfig support
GIF support

JPEG support

PNG support
gtS5imageformats
gtSmultimedia
gt5quickcontrols
gtS5quickcontrols2

3. Build the image using the command:

make -38

23.3 Hardware setup

For the QT setup, following hardware are required:

1. Monitor that supports DP interface. Make sure it supports 1080P format, otherwise the parameters in uboot should be

adjusted.

2. Cable matters DisplayPort to DisplayPort (DP to DP Cable)

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

230/237

http://doc.qt.io/qt-5/index.html

NXP Semiconductors

QT

3. USB wired/wireless mouse or keyboard

Figure 61. Hardware setup for QT

23.4 Running the QT5 demo

This section describes the steps for configuring the environment and running the Qt demos for LS1028ARDB.

23.4.1 Environment setting
Use the steps listed below to configure the environment settings:

* Make sure that the fonts directory exists in the /usr/share/ directory. If it does not exist, they can be found in the root
directory, and copy one or more to /usr/share, as shown in the example below:

[root@penIL:~]# cd /

[root@penIL:]# find ./ -name fonts
./usr/lib/qt/examples/quickcontrols2/texteditor/fonts
./usr/lib/qt/examples/quickcontrols2/swipetoremove/fonts
./usr/lib/qt/examples/quick/text/fonts
./usr/lib/qt/examples/quick/text/fonts/content/fonts
./usr/lib/qt/examples/quickcontrols/extras/dashboard/fonts

./usr/lib/qt/examples/quickcontrols/extras/gallery/fonts
./usr/share/imlib2/data/fonts

./usr/share/fonts

./usr/share/fonts/content/fonts

./etc/fonts

[root@penIL:1# cp -r /usr/lib/qt/examples/quick/text/fonts /usr/share/

1. The QT5 framework is configured now, and user can add any applications.

23.4.2 Running the demos

There are many sample demos in the directory /usr/1ib/qt/examples. Following are some of the demos and their
corresponding commands:

1. Example1: /usr/1ib/gt/examples/widgets/widgets/wiggly/wiggly --platform linuxfb

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 231/237

NXP Semiconductors

QT

Figure 62. Example 1: Wiggly text

2. Example 2: /usr/1ib/gt/examples/quickcontrols2/wearable/wearable --platform linuxfb

Figure 63. Example 2: Wearalbe system

3. Example 3: /usr/lib/qt/examples/gui/analogclock/analogclock --platform linuxfb

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 232 /237

NXP Semiconductors

QT

Figure 64. Example 3: Analog clock

Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 233 /237

NXP Semiconductors

Chapter 24

Revision history

The table below summarizes revisions to this document.

Table 47. Document revision history

Document
version

Date

Topic cross- reference

Change description

15/09/2020 (1.9

IEEE 1588/802.1AS

Added the section.

Vivante GPU

Added the chapter and related description..

Weston

Added the chapter and related description..

NXP servo stack

Made it a part of the chapter "EtherCAT".

29/05/2020 | 1.8

PREEMPT-RT

Added the section in Industrial features.

Interface naming in
Linux

Updated this section included in LS1028ARDB and LS1028ATSN.

Host system
requirements

Updated the section.

Running SELinux demo

Updated the section.

Some features earlier supported in Rev 1.7.1 are not supported in
Rev 1.8 release (Xenomai, OTA implementation, and EdgeScale
client).

20/02/20 1.7.1

Operation examples

Updated this section.

17/01/20 1.7

NXP servo stack

Added the chapter (nxp servo).

IEEE 1588/802.1AS

Added the chapter

LX2160ARDB/Rev2

Added the section.

Getting Open IL

Updated the section.

NETCONF/YANG

Other updates.

31/08/19 1.6

Verifying TSN features
on LS1028ARDB board

* Information related to pcpmap command removed from the
section TSN configuration on ENETC and TSN configuration on
Felix switch.

» Port names "eno/swp0" changed to "swp0" for few tsntool
commands.

* Note added in section Stream identification for usage of
nulltagged and streamhandle parameters.

» Added the section TSN stream identification.

+ Other minor updates.

Table 6 Updated the table "Host system mandatory packages". Added
autogen autoconf libtool and pkg-config packages.
BEE Added this chapter.

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

234 /237

NXP Semiconductors

Table 47. Document revision history (continued)

Revision history

Date Document

version

Topic cross- reference

Change description

Web Ul demo

Added this section in NETCONF/YANG.

NETCONF/YANG

» Added the section Enabling NETCONF feature in OpenlL and
other updates.

01/05/2019 | 1.5

Interface naming

Added the section. Describes interface naming for U-Boot and Linux
for LS1028ARDB.

Verifying TSN features
on LS1028ARDB board

Updated this section in the Chapter Time Sensitive Network (TSN).

BLE

Added the Chapter.

EdgeScale client

Added the Chapter.

Getting Open IL

Updated the OpenlL version and Git tag.

01/02/2019 | 1.4

Supported NXP
platforms and
configurations

Added support for LS1028ARDB (64-bit and Ubuntu). Updated
various sections accordingly.

Getting Open IL

Updated the OpenlL version and Git tag.

LS1028ARDB and
LS1028ATSN

Added this Section for LS1028ARDB support.

Time Sensitive Network
(TSN)

Reorganized this Chapter and added separate Section for Verifying
TSN features on LS1028ARDB board.

NFC Added the Chapter.

FlexCAN Minor updates in this Chapter. Also added the section, Hardware
preparation for LS1028ARDB and Testing CAN bus.

QT Added the Chapter.

15/10/2018 | 1.3.1

Getting Open IL

Updated the OpenlL version and Git tag

31/08/2018 | 1.3

EtherCAT Added the chapter.

FlexCAN Added the chapter.

i.MX6QSabreSD Added the section in chapter NXP OpenlL platforms. Updated other
support. sections for i.MX6Q Sabre support.

Getting Open IL

Updated the section.

Selinux demo

Added the section, Installing basic packages and updated Basic
setup. Updates in other sections.

31/05/2018 | 1.2

Hardware requirements

Updated the Section, "Hardware requirements" for RTnet.

Software requirements

Updated the Section, "Software requirements" for RTnet.

18/04/2018

RTnet

Added the Section, "RTnet".

Switch settings

Added a note for LS1043A switch setting.

30/03/2018 | 1.1

#unique_312

Added support for industrial loT baremetal framework in this section.

Table continues on the next page...

Open Industrial User Guide, Rev. 1.9, 09/2020

User's Guide

235/237

NXP Semiconductors

Table 47. Document revision history (continued)

Revision history

Date Document Topic cross- reference Change description
version

Booting the board Added a note for steps to be performed before booting up the board.
Reference Added the section.
documentation

22/12/2017 {1.0 OPC UA Added the Chapter.
Time Sensitive Network | Chapters for "1-board TSN demo" and "3-board TSN demo"
(TSN) replaced by a single chapter, "TSN demo".
#unique_313 + Updated the section, 'Industrial Features'.

» -IEEE 1588 -'sja1105-ptp' support removed.

25/08/2017 0.3 - Set up the OpenlL websitehttp://www.openil.org/.
OTA implementation OTA - Xenomai Cobalt 64-bit and SJA1105 support added.
Time Sensitive Network | Qbv support added.
(TSN)
SELinux SELinux support for LS1043 / LS1046 Ubuntu Userland added.
OP-TEE OP-TEE support for LS1021ATSN platform added.
4G-LTE Modem 4G LTE module - 64-bit support for LS1043ARDB, LS1046ARDB,

and LS1012ARDB added.
NXP OpenlL platforms Ubuntu Userland support for 64-bit LS1043ARDB and 64-bit
LS1046ARDB added.
26/05/2017 | 0.2 - Initial public release.
Open Industrial User Guide, Rev. 1.9, 09/2020
User's Guide 236 /237

http://www.openil.org/

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and QorlQ are trademarks of
NXP B.V. Arm and Cortex are the registered trademarks of Arm Limited (or its subsidiaries) in
the EU and/or elsewhere. All other product or service names are the property of their respective
owners. All rights reserved.

© 2020 NXP B.V.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: OpenlLUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Acronyms and abbreviations
	1.2 Reference documentation
	1.3 About OpenIL
	1.3.1 OpenIL Organization

	1.4 Supported NXP platforms and configurations
	1.4.1 Default compilation settings for NXP platforms

	2 Getting started
	2.1 Getting OpenIL
	2.2 OpenIL quick start
	2.2.1 Host system requirements
	2.2.2 Creating RAMDISK file system
	2.2.3 Resizing second partition
	2.2.4 Customing Ubuntu filesystem
	2.2.5 Building the images
	2.2.6 Troubleshooting

	2.3 Booting the board
	2.3.1 SD card bootup
	2.3.2 QSPI/FlexSPI bootup
	2.3.3 eMMC bootup
	2.3.4 Starting up the board

	2.4 Basic OpenIL operations
	2.4.1 Building Linux kernel
	2.4.2 Building U-Boot

	3 NXP OpenIL platforms
	3.1 Introduction
	3.2 LS1021A-TSN
	3.2.1 Switch settings
	3.2.2 Updating target images

	3.3 LS1021A-TWR
	3.3.1 Switch settings
	3.3.2 Updating target images

	3.4 LS1021A-IoT
	3.4.1 Switch settings
	3.4.2 Updating target images

	3.5 LS1043ARDB, LS1046ARDB and LS1046AFRWY
	3.5.1 Switch settings
	3.5.2 Updating target images

	3.6 LS1012ARDB
	3.6.1 Switch settings
	3.6.2 Updating target images

	3.7 i.MX6QSabreSD
	3.7.1 Switch settings for the i.MX6Q SabreSD
	3.7.2 Updating target images

	3.8 LS1028ARDB and LS1028ATSN
	3.8.1 Switch settings
	3.8.2 Interface naming
	3.8.2.1 Interface naming in U-Boot
	3.8.2.2 Interface naming in Linux
	3.8.2.3 Interface naming for LS1028ATSN

	3.8.3 Updating target images
	3.8.4 LCD controller and DisplayPort/eDP

	3.9 LX2160ARDB/Rev2
	3.9.1 Switch settings
	3.9.2 Updating target images

	3.10 i.MX8MPEVK
	3.10.1 Switch settings for the i.MX8MPEVK
	3.10.2 Updating target images

	4 Industrial features
	4.1 Deterministic Network
	4.1.1 IEEE 1588/802.1AS
	4.1.2 TSN

	4.2 Real Time
	4.2.1 PREEMPT-RT
	4.2.2 Xenomai
	4.2.3 Baremetal

	4.3 Industrial Protocols
	4.3.1 EtherCAT
	4.3.2 OPC-UA
	4.3.3 FlexCAN
	4.3.4 NFC
	4.3.5 BLE
	4.3.6 BEE/ZigBEE
	4.3.7 4G-LTE

	4.4 Security
	4.4.1 OP-TEE
	4.4.2 SELinux

	4.5 Remote Management
	4.5.1 NETCONF/YANG
	4.5.2 OTA
	4.5.3 EdgeScale client

	4.6 Display
	4.6.1 GPU
	4.6.2 Weston
	4.6.3 QT

	5 IEEE 1588/802.1AS
	5.1 Introduction
	5.2 IEEE 1588 device types
	5.3 IEEE 802.1AS time-aware systems
	5.4 linuxptp stack
	5.5 Quick Start for IEEE 1588
	5.5.1 Ordinary clock verification
	5.5.2 Boundary clock verification
	5.5.3 Transparent clock verification

	5.6 Quick Start for IEEE 802.1AS
	5.6.1 Time-aware end station verification
	5.6.2 Time-aware bridge verification

	5.7 Boundary clock jbod mode on LS1028ATSN
	5.8 Long term test
	5.8.1 linuxptp basic synhronization
	5.8.2 Boundary clock jbod mode on LS1028ATSN

	5.9 Known issues and limitations

	6 Time Sensitive Network (TSN)
	6.1 TSN hardware capability
	6.2 TSN configuration
	6.2.1 Using Linux traffic control (tc)
	6.2.2 Using tsntool
	6.2.3 Remote configuration using NETCONF/YANG
	6.2.4 Remote configuration using Web UI

	6.3 Verifying TSN features on LS1028ARDB board
	6.3.1 Tsntool User Manual
	6.3.1.1 Getting the source code
	6.3.1.2 Tsn tool commands
	6.3.1.3 Tsntool commands and parameters
	6.3.1.4 Input tips
	6.3.1.5 Non-interactive mode

	6.3.2 TSN configuration on ENETC
	6.3.2.1 Clock synchronization
	6.3.2.2 Qbv
	6.3.2.2.1 Basic gates closing
	6.3.2.2.2 Basetime test
	6.3.2.2.3 Qbv performance test
	6.3.2.2.4 Using taprio Qdisc Setup Qbv

	6.3.2.3 Qci
	6.3.2.3.1 Test SFI No Streamhandle
	6.3.2.3.2 Testing null stream identify entry
	6.3.2.3.3 Testing source stream identify entry
	6.3.2.3.4 SGI stream gate list
	6.3.2.3.5 FMI test

	6.3.2.4 Qbu
	6.3.2.5 Qav
	6.3.2.5.1 Using tsntool
	6.3.2.5.2 Using CBS Qdisc Setup Qav

	6.3.3 TSN configuration on Felix switch
	6.3.3.1 Linux switch configuration
	6.3.3.2 Clock synchronization
	6.3.3.3 Qbv
	6.3.3.3.1 Tsntool usage
	Closing basic gates
	Basetime test
	Qbv performance test

	6.3.3.3.2 Tc-taprio usage

	6.3.3.4 Qbu
	6.3.3.4.1 Tsntool usage
	6.3.3.4.2 Ethtool usage

	6.3.3.5 Qav
	6.3.3.5.1 Tsntool usage
	6.3.3.5.2 Tc-cbs usage

	6.3.3.6 Qci
	6.3.3.6.1 Tsntool usage
	Stream identification
	Stream gate control
	SFI maxSDU test
	FMI test
	Port based SFI set

	6.3.3.6.2 Tc-flower usage

	6.3.3.7 802.1CB
	6.3.3.7.1 Sequence Generator test
	6.3.3.7.2 Sequence Recover test

	6.3.3.8 TSN stream identification
	6.3.3.8.1 Stream identification based on PCP value of Vlan tag
	6.3.3.8.2 Based on DSCP of ToS tag
	6.3.3.8.3 Based on qci stream identification

	6.3.3.9 ACL

	6.3.4 Q-in-Q configuration on Felix switch

	6.4 Verifying TSN features on LS1021A-TSN board
	6.4.1 Topology
	6.4.2 SJA1105 Linux support
	6.4.3 Synchronized 802.1Qbv demo

	6.5 Verifying TSN features on i.MX8MP board
	6.5.1 Test environment
	6.5.2 Clock synchronization
	6.5.3 Qbv
	6.5.4 Qbu
	6.5.5 Qav

	7 Preempt-RT
	7.1 System RT Latency Tests
	7.1.1 Running Cyclictest

	7.2 RT Application Development

	8 Xenomai
	8.1 Xenomai running mode
	8.1.1 Running Xenomai Mercury
	8.1.2 Running Cobalt mode

	8.2 RTnet
	8.2.1 Hardware requirements
	8.2.2 Software requirements
	8.2.3 Verifying RTnet

	9 EtherCAT
	9.1 Introduction
	9.2 IGH EtherCAT architecture
	9.3 EtherCAT protocol
	9.4 EtherCAT system integration and example
	9.4.1 Building kernel images for EtherCAT
	9.4.2 Command-line tool
	9.4.3 System integration
	9.4.4 Running a sample application

	9.5 NXP servo stack
	9.5.1 CoE network
	9.5.2 Libnservo Architecture
	9.5.3 Xml Configuration
	9.5.3.1 Master Element
	9.5.3.1.1 Slave Element
	SyncManagers Element
	Sdo Element

	9.5.3.2 Axle Element

	9.5.4 Test
	9.5.4.1 Hardware Preparation
	9.5.4.2 Software Preparation
	9.5.4.3 CoE Network Detection
	9.5.4.4 Start Test

	9.6 EdgeScale client

	10 OPC UA
	10.1 OPC introduction
	10.2 The node model
	10.3 Node Namespaces
	10.4 Node classes
	10.5 Node graph and references
	10.6 Open62541

	11 FlexCAN
	11.1 Introduction
	11.1.1 CAN bus
	11.1.2 CANopen

	11.2 FlexCAN integration in OpenIL
	11.2.1 LS1021AIOT CAN resource allocation
	11.2.2 Introducing the function of CAN example code

	11.3 Running a CAN application
	11.3.1 Hardware preparation for LS1021-IoT
	11.3.2 Hardware preparation for LS1028ARDB
	11.3.3 Compiling the CANopen-app binary for the master node
	11.3.4 Running the CANopen application
	11.3.5 Running the Socketcan commands
	11.3.6 Testing CAN bus

	12 NFC
	12.1 Introduction
	12.2 PN7120 features
	12.3 Hardware preparation
	12.4 Software preparation
	12.5 Testing the NFC click board

	13 BLE
	13.1 Introduction
	13.2 Features
	13.3 Hardware preparation
	13.4 Software preparation
	13.5 Testing the BLE P click board

	14 BEE
	14.1 Introduction
	14.2 Features
	14.3 Hardware preparation
	14.4 Software preparation
	14.5 Testing the BEE click board

	15 4G-LTE Modem
	15.1 Introduction
	15.2 Hardware preparation
	15.3 Software preparation
	15.4 Testing 4G USB modem link to the internet

	16 OP-TEE
	16.1 Introduction
	16.2 Deployment architecture
	16.3 DDR memory map
	16.4 Configuring OP-TEE on LS1021A-TSN platform
	16.5 Running OP-TEE on LS1021A-TSN platform
	16.5.1 Running secure boot
	16.5.2 Executing Op-tee Daemon
	16.5.3 Executing OP-Tee test cases

	17 SELinux
	17.1 Running SELinux demo
	17.1.1 Obtaining the image for SELinux
	17.1.2 Installing basic packages
	17.1.3 Basic setup
	17.1.4 Demo 1: local access control
	17.1.5 Demo 2: enabling remote access control

	18 NETCONF/YANG
	18.1 Overview
	18.2 Netopeer2
	18.2.1 Overview
	18.2.2 Sysrepo
	18.2.3 Netopeer2 server
	18.2.4 Netopeer2 client
	18.2.5 Workflow in application practice

	18.3 Installing Netopeer2-cli on Ubuntu18.04
	18.4 Configuration
	18.4.1 Enabling NETCONF feature in OpenIL
	18.4.2 Netopeer2-server
	18.4.3 Netopeer2-cli
	18.4.3.1 Netopeer2 CLI commands
	18.4.3.2 Netopeer2 CLI datastore

	18.4.4 Sysrepod
	18.4.5 Sysrepocfg
	18.4.6 Sysrepoctl
	18.4.7 Operation examples
	18.4.8 Application scenarios

	18.5 Web UI demo
	18.6 Troubleshooting

	19 OTA implementation
	19.1 Introduction
	19.2 Platform support for OTA demo
	19.3 Server requirements
	19.4 OTA test case

	20 EdgeScale client
	20.1 What is EdgeScale
	20.2 Edgescale features
	20.3 Building EdgeScale client
	20.4 Procedure to start EdgeScale

	21 Vivante GPU
	22 Weston
	23 QT
	23.1 Introduction
	23.2 Software settings and configuration
	23.3 Hardware setup
	23.4 Running the QT5 demo
	23.4.1 Environment setting
	23.4.2 Running the demos

	24 Revision history

